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1. This paper deals with the following problem:

A matrix is said to be of type (R, K),, where 0 < s < RK, if it has B
rows and K columns and if s of its elements are 1 and the rest 0. Now
let R, K,r, k%, where 1 <r< R and 1<k <K, be four given natural
numbers. - Whlch is the greatest number s __A(R K,r, k), such that
there exists a matrix of the type (B, K),, which does not contain any
minor of the type (r, k), 4. e. & minor W1th r rows and % columns and all
elements equal to 1%

This problem was (for B = K, r = k) raised by K. Zarankiewicz
in [3]. It is properly a logical problem and can be formulated in the follo-
wing way: Let F and T be two sets with B and K elements, respectively.
How many elements s can a relation between E and F (i.e. a subset @
of ExF) contain, without containing any subset of the type E’'x F',
where B’ and F' are subsets of F and F with r and & elements, respecti-
vely? In the following, however, we use the matrix formulation.

In [2] T. K6vari, V.T. S6s and P. Turdn proved that
(1) Anymy g, §) < gn-HIG—1) al=0,
where [#] denotes the integral pa.rt of x. They also showed the asymptotlc
formula .

(2) limA (n,n, 2, 2)%‘”3’2 = 1.
N0

The same method as was used in [2] to prove (1) can also, as mentioned
there, be used to give an estimate of A(R,X,r,k). This gives
#

(3) AR, E, 7, 1) < (r—DE+ (k—1)""E*"'R

after a slight sharpening of the estimates influencing the fivst term in the
second member.

In this paper I will in section 2 give a special method for estim-
ating A (R, K, 2, k) from above, which gives another estimate than that
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obtained by specializing (3). Section 3 contains an asymptotic formula
for A(n,n, 2,3) and section 4 an estimate of A(n,n,2,2h) from
below. In section 5 some asymptotic formulas for rectangular matrices
are discussed.

Relations (3) and (8), as well as relations (4) and (8), imply (2).

2. TamorEM 1. For &k > 1 one has

(4) A(R, K, 2, k) < $K+((k—1) ER(R—1)+K?/4)"

Proof. We denote the row-vectors of a matrix M of the type (B, K),
R
by B,,»=1,2,...,R. I V= 3B, we have

==l

R
(5) v = 3B+ N BB, =s+ Y BB, ’

ve=1 S vk
since B! is equal to the number of ones in the »-th row. Further if we
E

put V = (a4, 8z, ..., 0x), We have 3 a, = s. Hence the Cauchy inequality

y=1
gives s* < KV? and from (b) it therefore follows that
s*|K <s+ ) B,B,.

v

Now if the matrix M does not contain any minor of the type (2, §).,
it is immediately clear that B,B, < k—1 for » % u, and hence SZ/K <
< s+ (k—1)R(R—1), which implies (4).

3. THEOREM 2. One has

(6) _ limAd(n, n,2, 3)n~%" =V2.
- T—>00

Proof. From (3) it follows that A (n,n,2,3) < nV2ns

It is now possible to get a lower estimate by a modlflca.tmn of the
method used in [2]. Let p be a prime > 5 and let the numbers N, a,b
vary in the following way:
(M FN=1,2,..,(0=3)2, a=1,2,...,p b=1,2,...,(p=1)[2.
) Let us further define <z, as the remainder resulting from the divi-
sion of z by p, so that (@), = @(p) and 0 < &)y < p.

We shall now construct a square matrix If; of order p(p—1)/2. We
enumerate the columns by the numbers 1, 2,...,p(p—1)/2 and denote
the rows by the pairs of numbers (a, b), where a and b vary as in (7).
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‘We then prescribe that there shall be ones in the row (a, ) in all places

with the column-numbers
oy = Np-+<{aN-+bp,
and with the colump-numbers
| — Np+<aN —b,,

where N =1,2,...,(p—3)/2. (Note that 1 <ey<p(p—1)/2 and
1< dy < p(p—1)/2.) Obviously ¢y s ¢r if N s L. Further, ¢y # dg
for all N and L. For ¢y = dy would first imply that N = L. Then we
should have aN +b = aN —b(p) and thus 2b = 0(p), which is impossible.
To sum up, this means that there are

ones in the matrix M,.

Can M, contain any minor of the type (2,3)s?

Let us regard the two rows denoted by (a,b) and (a’, b'), where
(a,b) and (a,d’) are two non-identical pairs of numbers. If there are
ones with the same column-numbers in these two rows, they must cor-
respond to the same value of N. Therefore we have to count the total
number of solutions in N of the four congruences

() aN;+b=a'N,+b' (), () aN;+b=a'N,—d'(p),

(II) aN,—b=a'Ny—d'(p), (Iv) —b = a'N,+b'(p)-
Each one of these congruences has at most one solution. If a + &/,
this is immediately clear. If & = a', the existence of a solution in the

first or second case would imply b = b’ contrary to the assumption. In

.the third or fourth ease it would imply b-+b’ = 0(p), which is also im-
“possible. Hence there is no solution if a = a'.

After this remark we observe that the first two congruences cannot

both be solvable, for on adding them we should then get

a(N,4-N,p) = a' (N1 +N:)(p),

where we can assume 4 5 o’. But then N, 4N, = 0(p), which is impossi-
ble since N varies as in (7). The same argument holds for the last two
congruences. Therefore the. total number of solutions in ¥ is <2, and
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the matrix M, does not contain any minor of the type (2,3);. This proves
that if p is prime >5 then
p(p—1) p(p—1)

A (—T:'2—127 3l =

plp—1)(p—-3) .
—

Now A(n,n,2,3) increases with = and as Py/Pyer = 1 when
y — oo, where p, is the »-th prime, we get

LimA (n,n,2,3)n " = V2,

N—+00
and hence the proof is finished.
4. TagorEM 3. For integral h = 1 one has

(8) LmA (n, n, 2, 2b)n~"* > B2
oo ’

Proof. For b = 1 and & = 2 the estimation is contained in (2) and (6),
respectively. For in the last case we have

limA(n,n,2,4) >lind@n,n,2,3) = V2.

N—ro0 N—>00

To prove it generally we choose p prime >3h and let the numbers
N, a,b vary in the following way:

N=1,2,...,p=8h, a=1,2,...,p, b=1,2,...,[p/k].

We now construct a square matrix of order p[p/h]. As before the
columns are enumerated by the integers 1,2,...,p[p/h] and the rows
by the pairs (a,b). We prescribe that in the row (a, b) there shall be ones
in the ploces with the column-numbers

S HENES

and zeros elsewhere. (If here we put 1 = 1, we get essentially the cons-
truction used in [2] to prove (2). Observe that ey = er if N 3£ L and
that 1 < ey < p[p/h])

It is now possible to prove that this matrix cannot contain any
minor of the type (2, 2h),,. Suppose that the contrary were true and that
the two rows were (a, ) and (a’, b). The ones with the same colunn-
-number must correspond to the same value of N and therefore

[ (aN bR, ] . [ L&' N+b'hd,
T R ) ]

icm
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would be true for 2 different values of N. But if the common value of
the two members above is denoted by Hy, we get
(9) aN+bh = Hyh+sn(p), o'N+b'h=Hyh+sy(p),

where 0 < sy <h—1 and 0< sy < h—1. Subtracting the congruences
we get

(10) (@—a" )N (b—b')h = sy— sy = fx (),

where —(h—1) < fy < (h—1).

First we observe that N = N; and N = N, = N, cannot corres-
pond to the same value of fy. For then (a—a')(N,—XN,) = 0(p), and
this implies & = o', so that (10) gives (b—b")h—fx = 0(p).

Now [(b—b)h—fn| < (p/h—1)h+h—1 = p—1, so that (b—b')h—
—fy = 0. But this means that fy = 0 and b = b’, which is impossible,
since we also had a = o'

Ag there are only 2h—1 possible values of fy and each one of them
corresponds to one N at most the system (9) cannot have 2k solutions
for V.

We have now constructed a square matrix of order p[p/h] Since
there are p— 3h elements equal to 1 in each row, the matrix contains
p2/h+ O (p?) elements equal to 1. Since the matrix does not contain any
minor of the type (2, 2h),, we dednce Theorem 3 in the same way as
Theorem 2.

Finally, since 4(n,n,2, %) increases with % it follows immediately
from (8) and (3) thab :

(1)  [k/2]* <LmA(n,n,2, kn"? <TmA(n, n, 2, k)0~ < (k—1)"
N—r00 N> 00

for all integers % > 1.
5. We finish with some remarks concerning rectangular matrices.
For fixed R it follows from (3) that

TmA(R, E,r, HE™ <r—1.

K00
But the matrix with all its elements in »—1 rows equal to 1 and the rest
equal to O shows that 4(R, K, r, k) = (r—1)K, so that

(12) limA(R, K,r, k)K" =r—1.

Koo
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This follows also from the exact formula

A(R,E,r,k) = (r—1)E+(k—1) (Ij) for all K > (k—1) (1:),
proved by K. Culik in [1].

Tet us now for r = 2 congider the case when X — co and R/K
converges to a fixed number ¢ Then (3) shows that

im A(R,K,2,k)E " <t(k—1)"
il

for all ¢ > 0.

On the other hand, we observe that in the maitrices M,, used in the
proof of (2) (see [2]) and M,, used in the proof of Theorem 2, all rows
contained the same number of ones. This shows that

gu(t) = lim A (R, K, 2, H) K~ = t(k—1)"
)
for k=2 or 3 and 0 ¢t <1,
The function ¢, can easily be determined for all ¢ For if {>1
one has

lim A(R, K,2,2)E~* = lim A(K, R, 2,2)R™* ",

K—co . Rro0
RIK—t K [R—1/t
50 that go(t) = t**g,(1/t). Hence
t for 01,
6 (t) = 12
t for t>1.

Ag for general %k we first put k—1 matrices M, beside each other
and conclude that from (2) and (3) follows
(18)  gu(t) = t(k—1)" forall % >2 and 0 <t <<1/(k—1).

Now R;'A(R,,K,2,k) < R'A(Ry, K,2,%) if B, >R, and this
inequality shows that the function 7y () = ¢~ gx(f) is non-increasing where
it exists. For all & > 2 the formula (13) shows that hy is constant in a
certain interval 0 < ¢ < a5 and one could therefore agk for the greatest
a;, With this property. Some investigations in this direction follow below.

If % >3 is 0dd we put (k—1)/2 of the matrices M beside each other
and conclude that (13) is valid in the extended interval 0 < ¢ < 2/(k—1).
Finally, if %—1 is a square, we will prove that (13) is valid in 0 <? <
< 1[(B—~1)2 . S o ‘

icm
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THEOREM 4. For integral s =1 and 0 <t << 1/s one has

lim A(R,K,2,s+1)E" =1is.
AR

(14)

Proof. To get an estimate from below one can proceed as follows:
Let p be a prime >s and let the numbers N, L, ¢, b vary in this way:

N=1,2,...,p—1,
L=1,2,..s,

a=1,2,...,p,
b=1,2,...,[p/s].

Now define a matrix with p? columns and p[p/s| rows as follows:
Enumerate the columns by the integers 1,2, ..., p* and the rows by the
pairs (@, b). Further prescribe that in the row (a, b) there shall be ones
in all places with the column-numbers

Np+LaN+bs+L,,

where & and L vary as in (15). This gives (p—1)s elements equal to 1 in
every row and hence p3+0(p?) in the whole matrix.

Consider now special choices of I, say L in the row (@, b) and L'
in the row (a’, b'). There are s® possibilities to choose the pair I, L’ and it
is easy to sce that to each of these choices corresponds at most one solu-

tion in N of the congruence

aN+4bs+L = o'N+b's+ L'

(15)

Hence the matrix constructed does not contain any minor of the
type (2, 8"+ 1)ys2py- The rest of the proof runs as above.

.
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