R. SIKORSKI

REFERENCES

- [1] J. Herbrand, Recherches sur la théorie de la démonstration, Prace Towarzystwa Naukowego Warszawskiego, Wydział III, 33 (1930).
- [2] J. Łoś, A. Mostowski and H. Rasiowa, A proof of Herbrand's theorem, Journal des Mathématiques Pures et Appliquées 35 (1956), p. 19-24.
- [3] H. Rasiowa and R. Sikorski, On the isomorphism of Lindenbaum algebras with fields of sets, Colloquium Mathematicum 5 (1958), p. 143-158.
- [4] L. Rieger, On free *complete Boolean algebras, Fundamenta Mathematicae 38 (1951), p. 35-52.
- [5] O jedné základni věte matematické logiky, Časopis pro přstovaní Matematiky 80 (1955), p. 217-231.

Reçu par la Rédaction le 18. 10. 1957

COLLOQUIUM MATHEMATICUM

VOL. VI

DÉDIÉ À M. CASIMIR KURATOWSKI

1958

ON A COMBINATORICAL PROBLEM

BY

C. HYLTÉN-CAVALLIUS (LUND)

1. This paper deals with the following problem:

A matrix is said to be of type $(R, K)_s$, where $0 \le s \le RK$, if it has R rows and K columns and if s of its elements are 1 and the rest 0. Now let R, K, r, k, where $1 \le r \le R$ and $1 \le k \le K$, be four given natural numbers. Which is the greatest number s = A(R, K, r, k), such that there exists a matrix of the type $(R, K)_s$, which does not contain any minor of the type $(r, k)_{rk}$, i. e. a minor with r rows and k columns and all elements equal to 1?

This problem was (for R=K, r=k) raised by K. Zarankiewicz in [3]. It is properly a logical problem and can be formulated in the following way: Let E and F be two sets with R and K elements, respectively. How many elements s can a relation between E and F (i. e. a subset G of $E \times F$) contain, without containing any subset of the type $E' \times F'$, where E' and F' are subsets of E and F with r and k elements, respectively? In the following, however, we use the matrix formulation.

In [2] T. Kővari, V. T. Sós and P. Turán proved that

(1)
$$A(n,n,j,j) < jn + [(j-1)^{1/j} n^{(2j-1)/j}],$$

where [x] denotes the integral part of x. They also showed the asymptotic formula

(2)
$$\lim_{n\to\infty} A(n, n, 2, 2) n^{-3/2} = 1.$$

The same method as was used in [2] to prove (1) can also, as mentioned there, be used to give an estimate of A(R, K, r, k). This gives

(3)
$$A(R, K, r, k) \leq (r-1)K + (k-1)^{1/r}K^{1-1/r}R$$

after a slight sharpening of the estimates influencing the first term in the second member.

In this paper I will in section 2 give a special method for estimating A(R, K, 2, k) from above, which gives another estimate than that

61

obtained by specializing (3). Section 3 contains an asymptotic formula for A(n, n, 2, 3) and section 4 an estimate of A(n, n, 2, 2h) from below. In section 5 some asymptotic formulas for rectangular matrices are discussed.

Relations (3) and (8), as well as relations (4) and (8), imply (2).

2. Theorem 1. For $k \geqslant 1$ one has

(4)
$$A(R, K, 2, k) \leqslant \frac{1}{2}K + ((k-1)KR(R-1) + K^2/4)^{1/2}.$$

Proof. We denote the row-vectors of a matrix M of the type $(R, K)_s$ by B_r , r = 1, 2, ..., R. If $V = \sum_{i=1}^R B_r$ we have

(5)
$$V^{2} = \sum_{\nu=1}^{R} B_{\nu}^{2} + \sum_{\nu \neq \mu} B_{\nu} B_{\mu} = s + \sum_{\nu \neq \mu} B_{\nu} B_{\mu},$$

since B_{ν}^2 is equal to the number of ones in the ν -th row. Further if we put $V = (a_1, a_2, \ldots, a_K)$, we have $\sum_{\nu=1}^K a_{\nu} = s$. Hence the Cauchy inequality gives $s^2 \leq KV^2$ and from (5) it therefore follows that

$$s^2/K \leqslant s + \sum_{v \neq \mu} B_v B_\mu$$
.

Now if the matrix M does not contain any minor of the type $(2, k)_{2k}$, it is immediately clear that $B_{\nu}B_{\mu} \leq k-1$ for $\nu \neq \mu$, and hence $s^2/K \leq s + (k-1)R(R-1)$, which implies (4).

3. THEOREM 2. One has

(6)
$$\lim_{n\to\infty} A(n, n, 2, 3) n^{-3/2} = \sqrt{2}.$$

Proof. From (3) it follows that $A(n, n, 2, 3) \leq n + \sqrt{2} n^{3/2}$.

It is now possible to get a lower estimate by a modification of the method used in [2]. Let p be a prime ≥ 5 and let the numbers N, a, b vary in the following way:

(7)
$$N = 1, 2, ..., (p-3)/2, a = 1, 2, ..., p_{\bullet} b = 1, 2, ..., (p-1)/2.$$

Let us further define $\langle x \rangle_p$ as the remainder resulting from the division of x by p, so that $\langle x \rangle_p \equiv x(p)$ and $0 \leqslant \langle x \rangle_p < p$.

We shall now construct a square matrix M_3 of order p(p-1)/2. We enumerate the columns by the numbers 1, 2, ..., p(p-1)/2 and denote the rows by the pairs of numbers (a, b), where a and b vary as in (7).

We then prescribe that there shall be ones in the row (a, b) in all places with the column-numbers

$$c_N = Np + \langle aN + b \rangle_p$$

and with the column-numbers

$$d_N = Np + \langle aN - b \rangle_p,$$

where $N=1,2,\ldots,(p-3)/2$. (Note that $1 < c_N < p(p-1)/2$ and $1 < d_N < p(p-1)/2$.) Obviously $c_N \neq c_L$ if $N \neq L$. Further, $c_N \neq d_L$ for all N and L. For $c_N = d_L$ would first imply that N=L. Then we should have $aN+b \equiv aN-b(p)$ and thus $2b \equiv 0(p)$, which is impossible. To sum up, this means that there are

$$p\frac{p-1}{2}2\frac{p-3}{2} = \frac{p^3}{2} + O(p^2)$$

ones in the matrix M_3 .

Can M_3 contain any minor of the type $(2,3)_6$?

Let us regard the two rows denoted by (a,b) and (a',b'), where (a,b) and (a',b') are two non-identical pairs of numbers. If there are ones with the same column-numbers in these two rows, they must correspond to the same value of N. Therefore we have to count the total number of solutions in N of the four congruences

(I)
$$aN_1 + b \equiv a'N_1 + b'(p)$$
, (III) $aN_3 + b \equiv a'N_3 - b'(p)$,

$${\rm (II)} \quad aN_2-b\equiv a'N_2-b'(p), \qquad \qquad {\rm (IV)} \quad aN_4-b\equiv a'N_4+b'(p). \label{eq:constraint}$$

Each one of these congruences has at most one solution. If $a \neq a'$, this is immediately clear. If a = a', the existence of a solution in the first or second case would imply b = b' contrary to the assumption. In the third or fourth case it would imply $b+b' \equiv 0(p)$, which is also impossible. Hence there is no solution if a = a'.

After this remark we observe that the first two congruences cannot both be solvable, for on adding them we should then get

$$a(N_1+N_2) \equiv a'(N_1+N_2)(p),$$

where we can assume $a \neq a'$. But then $N_1 + N_2 \equiv 0(p)$, which is impossible since N varies as in (7). The same argument holds for the last two congruences. Therefore the total number of solutions in N is ≤ 2 , and

ON A COMBINATORICAL PROBLEM

the matrix M_3 does not contain any minor of the type $(2,3)_6$. This proves that if p is prime ≥ 5 then

$$A\left(\frac{p(p-1)}{2}, \frac{p(p-1)}{2}, 2, 3\right) \geqslant \frac{p(p-1)(p-3)}{2}.$$

Now A(n, n, 2, 3) increases with n and as $p_r/p_{r+1} \to 1$ when $r \to \infty$, where p_r is the r-th prime, we get

$$\lim_{n\to\infty} A(n, n, 2, 3) n^{-3/2} \geqslant \sqrt{2},$$

and hence the proof is finished.

4. Theorem 3. For integral $h \geqslant 1$ one has

(8)
$$\lim_{n \to \infty} A(n, n, 2, 2h) n^{-3/2} \geqslant h^{1/2}.$$

Proof. For h=1 and h=2 the estimation is contained in (2) and (6), respectively. For in the last case we have

$$\lim_{n\to\infty} A(n, n, 2, 4) \geqslant \lim_{n\to\infty} A(n, n, 2, 3) = \sqrt{2}.$$

To prove it generally we choose p prime >3h and let the numbers N, a, b vary in the following way:

$$N = 1, 2, ..., p-3h, \quad a = 1, 2, ..., p, \quad b = 1, 2, ..., [p/h].$$

We now construct a square matrix of order $p \lceil p/h \rceil$. As before the columns are enumerated by the integers $1,2,\ldots,p \lceil p/h \rceil$ and the rows by the pairs (a,b). We prescribe that in the row (a,b) there shall be ones in the places with the column-numbers

$$e_N = N\left(\left[rac{p}{h}
ight] + 1
ight) + \left[rac{\langle aN + bh
angle_p}{h}
ight]$$

and zeros elsewhere. (If here we put h=1, we get essentially the construction used in [2] to prove (2). Observe that $e_N \neq e_L$ if $N \neq L$ and that $1 < e_N < p[p/h]$.)

It is now possible to prove that this matrix cannot contain any minor of the type $(2, 2h)_{4h}$. Suppose that the contrary were true and that the two rows were (a, b) and (a', b'). The ones with the same column-number must correspond to the same value of N and therefore

$$\left[rac{\langle aN+bh
angle_p}{h}
ight]=\left[rac{\langle a'N+b'h
angle_p}{h}
ight]$$

would be true for 2h different values of N. But if the common value of the two members above is denoted by H_N , we get

(9)
$$aN+bh \equiv H_Nh+s_N(p), \quad a'N+b'h \equiv H_Nh+s_N'(p),$$

where $0 \leqslant s_N \leqslant h-1$ and $0 \leqslant s_N' \leqslant h-1$. Subtracting the congruences we get

$$(10) \qquad (a-a')N + (b-b')h \equiv s_N - s_N' \equiv f_N(p),$$

where $-(h-1) \leqslant f_N \leqslant (h-1)$.

First we observe that $N=N_1$ and $N=N_2\neq N_1$ cannot correspond to the same value of f_N . For then $(a-a')(N_1-N_2)\equiv 0(p)$, and this implies a=a', so that (10) gives $(b-b')h-f_N\equiv 0(p)$.

Now $|(b-b')h-f_N| \leq (p/h-1)h+h-1=p-1$, so that $(b-b')h-f_N=0$. But this means that $f_N=0$ and b=b', which is impossible, since we also had a=a'.

As there are only 2h-1 possible values of f_N and each one of them corresponds to one N at most the system (9) cannot have 2h solutions for N.

We have now constructed a square matrix of order p[p/h]. Since there are p-3h elements equal to 1 in each row, the matrix contains $p^3/h + O(p^2)$ elements equal to 1. Since the matrix does not contain any minor of the type $(2, 2h)_{4h}$, we deduce Theorem 3 in the same way as Theorem 2.

Finally, since A(n, n, 2, k) increases with k it follows immediately from (8) and (3) that

$$(11) \quad [k/2]^{1/2} \leqslant \lim_{n \to \infty} A(n, n, 2, k) n^{-3/2} \leqslant \overline{\lim}_{n \to \infty} A(n, n, 2, k) n^{-3/2} \leqslant (k-1)^{1/2}$$

for all integers $k \geqslant 1$.

5. We finish with some remarks concerning rectangular matrices. For fixed R it follows from (3) that

$$\overline{\lim}_{K\to\infty} A(R,K,r,k)K^{-1} \leqslant r-1.$$

But the matrix with all its elements in r-1 rows equal to 1 and the rest equal to 0 shows that $A(R, K, r, k) \ge (r-1)K$, so that

(12)
$$\lim_{K \to \infty} A(R, K, r, k) K^{-1} = r - 1.$$

This follows also from the exact formula

$$A(R,K,r,k) = (r-1)K + (k-1)\binom{R}{r} \quad \text{ for all } \quad K \geqslant (k-1)\binom{R}{r},$$

proved by K. Čulík in [1].

Let us now for r=2 consider the case when $K\to\infty$ and R/K converges to a fixed number t. Then (3) shows that

$$\varlimsup_{\substack{K\to\infty\\R/K\to t}}A\left(R,K,2\,,\,k\right)K^{-3/2}\leqslant t(k-1)^{1/2}\quad\text{ for all }\quad t\geqslant 0\,.$$

On the other hand, we observe that in the matrices M_2 , used in the proof of (2) (see [2]) and M_3 , used in the proof of Theorem 2, all rows contained the same number of ones. This shows that

$$g_k(t) = \lim_{\substack{K \to \infty \\ R/K \to t}} A(R, K, 2, k) K^{-3/2} = t(k-1)^{1/2}$$

for k=2 or 3 and $0 \le t \le 1$.

The function g_2 can easily be determined for all t. For if t>1 one has

$$\lim_{\substack{K \to \infty \\ R/K \to t}} A(R, K, 2, 2) K^{-3/2} = \lim_{\substack{R \to \infty \\ K/R \to 1/t}} A(K, R, 2, 2) R^{-3/2} t^{3/2},$$

so that $g_2(t) = t^{3/2}g_2(1/t)$. Hence

$$g_2(t) = egin{cases} t & ext{ for } & 0 \leqslant t \leqslant 1, \ t^{1/2} & ext{ for } & t > 1. \end{cases}$$

As for general k we first put k-1 matrices M_2 beside each other and conclude that from (2) and (3) follows

(13)
$$q_k(t) = t(k-1)^{1/2}$$
 for all $k \ge 2$ and $0 \le t \le 1/(k-1)$.

Now $R_2^{-1}A(R_2, K, 2, k) \leqslant R_1^{-1}A(R_1, K, 2, k)$ if $R_2 \geqslant R_1$ and this inequality shows that the function $h_k(t) = t^{-1}g_k(t)$ is non-increasing where it exists. For all $k \geqslant 2$ the formula (13) shows that h_k is constant in a certain interval $0 \leqslant t \leqslant a_k$ and one could therefore ask for the greatest a_k with this property. Some investigations in this direction follow below.

If $k \ge 3$ is odd we put (k-1)/2 of the matrices M_3 beside each other and conclude that (13) is valid in the extended interval $0 \le t \le 2/(k-1)$. Finally, if k-1 is a square, we will prove that (13) is valid in $0 \le t \le 1/(k-1)^{1/2}$.

THEOREM 4. For integral $s \ge 1$ and $0 \le t \le 1/s$ one has

(14)
$$\lim_{\substack{K \to \infty \\ R/K \to t}} A(R, K, 2, s^2 + 1) K^{-3/2} = ts.$$

Proof. To get an estimate from below one can proceed as follows: Let p be a prime > s and let the numbers N, L, a, b vary in this way:

Now define a matrix with p^2 columns and $p\lceil p/s \rceil$ rows as follows: Enumerate the columns by the integers $1,2,\ldots,p^2$ and the rows by the pairs (a,b). Further prescribe that in the row (a,b) there shall be ones in all places with the column-numbers

$$Np+\langle aN+bs+L\rangle_p$$

where N and L vary as in (15). This gives (p-1)s elements equal to 1 in every row and hence $p^3+O(p^2)$ in the whole matrix.

Consider now special choices of L, say L in the row (a,b) and L' in the row (a',b'). There are s^2 possibilities to choose the pair L, L' and it is easy to see that to each of these choices corresponds at most one solution in N of the congruence

$$aN + bs + L \equiv a'N + b's + L'.$$

Hence the matrix constructed does not contain any minor of the type $(2, s^2+1)_{2(s^2+1)}$. The rest of the proof runs as above.

REFERENCES

 K. Čulík, Teilweise Lösung eines verallgemeinerten Problems von K. Zarankiewicz, Annales Polonici Mathematici 3 (1956), p. 165-168.

[2] T. Kövari, V. T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloquium Mathematicum 3 (1954), p. 50-57.

[3] K. Zarankiewicz, P 101, ibidem 2 (1951), p. 301.

MATHEMATICAL INSTITUTE, LUND, SWEDEN

Reçu par la Rédaction le 20. 10. 1957