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ON THE INTERSECTION OF A LINEAR SET
WITH THE TRANSLATION OF ITS COMPLEMENT
BY
S.SWIERCZKOWSKE (WROCEAW)

(@, b) denotes the closed interval {#:a < » < b} and [a,b] denotes
the get of integers which belong to (a, b). The set [a, b] is also called an
interval. If B is a set of numbers then we denote by F, the translated
set {a+1: meE}. For a finite set § let |8| be the number of elements in §.
For a Lebesgue measurable set Z we denote by mZ the measure of Z.
‘We suppose now that X is any measurable subset of an interval I = (a, b),
that ¥ = I\ X and that similarly 4 and B are any complementary sub-
sets of [1,¥]. It is the purpose of this paper to prove the following the-
orems:

TurcoreM 1. There exists such an integer n that
N — A
(1) [urBl > - (2—V4~10]4]|B]/NY).

THEOREM 2. There ewists such a number t that

(2) WX,AY) = 1"55(2—V4—10meY/(m”133).

Estimations similar to that which we give in Theorem 1 were first
considered by P. BErdos and P, Scherk!). P. Erdés found that if | 4| = | B,
then max M, > N/8 where M, = |4,~B|. This was improved by

P. Scherk, who obtained maxM, >N (2——1/5) /4. From Theorem 1
n

follows the stronger result maxM, > N(4—V6)/10.
1

Jan Mycielski proved that if X, ¥ are measurable subsets of the
interval I = (0, 1), then for some t

m(X,~Y) = 1-Vi—mImY.

1y P. Erdds, Some remarks on number theory, Riveon Lematematika 9 (1955),
p. 45-48.
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8

~ If X and Y are complementary sets, then this result follows from
Theorem 2.

1. We shall prove first that Theorem 1 implies Theorem 2. It is
evident that (2) is invariant under affine transformations of XU 9.
Thus it is sufficient to prove Theorem 2 for I = (0,1).

Let & be any positive number. If N is sulficiently large, then X can
be covered by such a sum X of intervals

k—1 k
VAN .
9 “( ¥ ’N)
that m(X-—X*) < e2). If ¥ =1 X*, then evidently m(¥V--Y") <e.
We put 4 = [k:Q"C X*}, B = {k:Q*C ¥"). These scts satisty the
agsumptions of Theorem 1, and consequently (1) holds for some n. From
(1) and from the obvious equalities |4|=mX"-N, |Bl = mY¥" N,
|4y ~ Bl = m(Xpy~ X))+ N follows :
(3) m(X; A Y > L2—Vi-10mX ' mY") for ¢=n/N.
Let ns observe now that, since m(X;~X;) << ¢ holds for cach ¢,

we have

(4) |m( Xy~ X)=m (X ~ X" < 2

by (X~ X)X AYC(X,~X) v (XYY, Bince e is arbitrary, we
get from (3) and (4)

supm (X, ~ ¥) > 1(2—V4—10mXmY).
i

In order to obtain (2) we observe that m(A;~ Y) is a continuous
function of ¢ since, by (4), the functions m (X} ~ ¥*) approximate it
uniformly.

2. We shall give a proof of Theorem 1. In this section we reduce
this task to the proof that a certain inequality (3) implies another one
(6).

One observes easily that |4, ~ B[ is the number of all such pairs
{@,y> that xed,yeB and 2--n ==y. We denote the set of these pairs
by D, and define M, = |D,|. Since | D, contains |A||B] elements, we
have <N

A 1B = D' M.

n|<N

?) X=X* denotes the symmetric difference (X\X*)w (X*\X).

icm

COMMUNICATTIONS 187

Thus, for 0 << &k < N,
B = D Mt D, My
<,

inj<k 1=k

If we write Ry for > M,, then this equality implies
i miSk

{3) [41B| < 2(k—1)max M, +E.

Let us suppose now that from (8) follows

{6) max M, >(6+<p(—l%f))l\*,

Let ¢ be any positive integer. We shall prove that

(7) . max M, > (6+<p (“;r—q))N

We define

A ={lg+j:1+1e4,1 <j<g}, B=I[1,NN4.

We prove first that, for i, = |4, ~ B|,
(8) qmax M, > max M, .

Let us observe that M,,.; = (q—§)Mu+iM,., for j=0,1,...,¢-
Therefore there exists such an I that max M, = My = ¢M,;. This implies
formula (8).

Inequality (6) can be applied to 4 and B. We obtain then

_ - 1
(9) max M, >(6—i—<p(‘ﬁq~))l\fq.

But §= 0 by |A| = q|4|, |B| == ¢|B|. Thug (7) follows from formulae
(8) and (9).

Since ¢ can be arbitrarily large we obtain from (7) maxM, = 6-N.
Thig implies Theorem 1.

3. Let us denote by Bx ¥ the Cartesian product of the sets B and
F, i 6. BXF = (<&, y>:wel, yF). For W = [0,n] we put 4 = {{z,y>:
@y, 0+y W) and |B, F| = (EXF)~4}. Thus |B,F| denotes the
number of all points of the integral lattice which lie in the triangle pre-
sented in fig. 1 and belong to B x'F. We denote maxM, by d.
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Our pregent aim is to prove the following property of R, :
31 If W =

that
(10) UCoV=U0vV'=W, U~V =UAn~V =03
and
(11) WU+ U™ | = W] < d
and
(12) Ry = |U, UV, V.
Proof. We define
U=4,nWi, V=258n~W.,
U'=BrWi,, V' =A4d~Wi,
Then
(13) ToV=0vV =Wy, UAV=U0~7"=0
and
(14) O1+10"1 = |(W—d, |P|+|V| = |W]—d.

Equalities (13) are obvious. Let us prove (14). By |d,~B| < d
and (4~ B) C Wy, we obtain |T ~ U*| < d. Thus, by (13), | F|-+|7*|
= Vo7 =W

Similarly from [By~Ad| ==|d_,~B| <d and (13) follows the
first inequality in (14).

Since (13) implies [T]{-+{7| = |T*|-+|V"| = |W|, we have, by (14},

(15) O+ T" W) <'d
Let us now prove that for 4 = {(m, Yyow

(16) R = [{(TxT*o

<Y, mayd'vl\';ll
(VX V*)} "\A‘-

This follows from the equalities

=X Moy (T TYndl= N i,

ek e

KT =< T") ~ 4]

We shall prove the fivst of them. We observe that <z, 45¢(T x T*) ~ 4
means that #—ked,ye<B and 2 < y. If @' =a—k, then this condition

%) @ denotes the empty set.

[0, N—k~—11, then there emist such sets U, V, U", v*

COMMUYDNICATIONS 189

is equivalent to 2’ ¢4,y eB,2'+k <y and this means that (&', ¥>e | Dy.
nak

The equality follows from |D,| = M,,. The proof of the second equality
is analogous.

‘We consider now" a transformation = of the space of all pairs <@,y
defined by r(w,z/>-<w k—1,N—y>. Wedetine U=U_,_,, V=V 13
U = [N—y:yeT"), V' = {N—y:9e 7"} Since then ¢ (T x T") = U x U",
2(FPx V") =VxV" and 7(d) = 4, we obtain 3.1 from (13), (15) and
(16).

4. In this section we shall prove a lemma which will be applied
later.

We congider the function |8, 8% +|T, 7"|, where W = [0,n]. For
0 < 5,5 < n+l we denote by u(s, s") the conditional maximum of this
function where the conditions are

{17) QuTl=8"uT"=W, S8~T=8"~T"=0

and

(18) 8 =s |8=¢ or [T=s |T=5s"

TFor any intervals L = [a, b] and @ = [¢, d] let us write L << @ if
a <cand b <d or if one of them is empty.

LEMMA 1. If 0<C s, 8' << n-t1, then there ewist such disjoint intervals.

D, W, 2 and such disjoint intervals @, ¥, Q* that (fig. 2)
BT R =0T L =T,

P<P<Q VP<co<,

127 < |9] < |2 +19"| < |91+ 2] < W,

and if we define 8, 8* by
S=0090, J' =& for Q+6,
(19)
wmd 8=V, 8 =¥o0Q jor Q=0

and T, T by (17), then (18) and
(20) 8, 8% 1T, T = u(s, s")
hold.

COROLLARY oF LmmmA 1. We have ‘
(21)  pls, s%) = |O||O"|+[P|[¥*| — 3] 12" (19— 27| 1)+
(1] P — || — | Q7)) (| @] + 1P| — 9" | — Q7| -1)].
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Proof of the Corollary. Defining 8, 8" by (19) and then 7,7
by (17) we find that §, 8%, T, T* are sums of the intervals @, ¥, Q, &,
w* Q°. Substituting these sums in (20) and observing how |7, F| was
defined (fig. 1) we eagily obtain (21) (fig. 2).

¢*
'q)*
[0} Y 2

Fig. 2

Proof of Lemma 1. Conditions (17), (18) and (20) are invariant
under simultaneous transpositions of S with T and §* with 7*. Thus
the clags 9 of such quadruples {§, 8%, 7, T"} that ne§ and (17), (18),
(20) hold is not empty. In the followmg let us denote by 8,8,1,1"

Zw attains on

such sets that {8, 8%, T, I") <X and ¢(8, 8", T, T
zeS

them ity maximal value in K. We shall prove that for these sets if is
possible to find intervals &, ¥, 2, &", ¥, Q" which have the proper-
ties mentioned in Lemma 1 and are sueh that (19) holds. By this Lemma 1
will be proved.

First we shall show properties 4.1-4.8 of 8, 8", T, T". Let us de-
note by B any of the sets §, 8%, T, T" and by E*, D, D* the remaining
three, but in such a way that, with this notation, in the table

ST

00 Nl

B, D" will stand in the same column and X, D
L will stand in the same line.

An interval L will be called maximal in E
if LC.F but none of the inclusions L, C B,
L_,, IC ¥ holds.

We define p (#)=n—z and p@ = [p (2
(fig. 3).

):WGQ}
Fig. 3
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If L is maximal in ¥ and @ is maximal in &* and L ~pQ s @, then
let us say that L and @ correspond to each other or that L (@) corresponds

o Q (L
We shall denote by s(z) the propositional function

zeB and x+1leD and p(x)eD*.

‘We shall say that an interval L is free it L_,, L, C W.

In the proofs of 4.1 and 4.7 we shall restrict ourselves to one of the
possible substitutions of B, E*, D, D* for §,8,T,T*. For other sub-
stitutions the proofs are analogous.

4.1, = (x) holds for none x.

Proof. We set B = § and suppose that
then z(x) holds for some z, ¢. e.

« (:
ze8 and a+1lel and  p(x)el . P
Let us define the sets §,T by
=8| {z)) v l@+1}, T =W\S. 1
Evidently (17) and (18) hold if we sub- Fig. 4

stitute §, T for 8, T. Consequently
(22) S, 85 41T, I°) < ls, 87).

We observe now that

I8, 8| —18, 8 = l{z+1}, 8"|—i{z}, 8 =0
by p(@)eT" (see fig. 4). But ‘ '
T, T —|T, T"| = ||}, T" — {1}, T = 1.
Adding these equalities we obtain
18, 81 +I\T, T —18, §'|—|T, T*| =1.
This is in contradietion to (20) and (22).

4.2. If L and Q correspond to each other, then L < p@ (fig 5).
Proof. We suppose that L =[a,b]CE and @ = [g,h] C B
Let us prove that a < p(k). Indeed, if p(h) < & then p(g) > a holds by
L~ pQ s B(fig. 6). Thus pla—1)e@ and m(a—1) holds by
ack and

a—1eD, pla—1) <E".
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This is impossible by 4.1. Since a transposition of ¢ and L does no harm,
we find that also g <p(b). From o << p(h) and b < p(g) follows L < pg.

AN

I N
a ph) b p(p a
Fig. 5

T, 6
4.3. If L = [a, b] 45 mazimal in E and b-+1<W then B* ~pL s 0.
Proof. If B* ~pL = @, then pL C D*. Thus
beH b+1eD p(b)eD*.
So 7(b) holds in contradiction to 4.1.

4.4. Let L denote an interval maximal in B. Then at most one snierval
corresponds to L. An interval @ corresponds to I if and only if B*.~pL s @
and then .

and and

B ~LCpQ.

Proof. If @ corresponds to I, then B'~pL = @ by @ CI* and
Q~pLsB. Conversely, if B* ~pL is not empty then this set is con-
tained in a sum of intervals which are maximal in E* and all correspond
to L.

Now, by 4.2, two intervals which correspond to L must intersect.
Since they are maximal, only one interval @ corresponds to L. Thug
E* ~pL is contained in @. The inclusion follows.

CorOLLARY. If L, C W, then an dnterval @ corresponds to L.

This easily follows from 4.3 and 4.4.

4.5. If L is mawimal in B, then there evist such intervals ¢Ii, ¢ I thot

L=c¢LodL, c¢L<el, oL C_‘p.D*, el C pB*,
and if @ corresponds to L, then ¢L = L~ pQ.

Proof. We define oL =L ~pB*,¢'L = L\cL. If oL~ @ then
4.5 holds evidently by 4.4. Form 4.4 it follows also that oL = & holds
if and only if an interval ¢ corresponds to L and that then o¢L-C L ~ PQ.
Thig inverse inclusion follows from @ C B*. Thus we bave proved that

¢L is an interval. From L < p@ it follows that ¢’ L is an interval and that
¢'L < ¢L holds.

icm
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CoroLrARY. If L C W, then ¢L # @.
This easily follows from 4.4 (Corollary) and from 4.5.

4.6. If L = [a,b] is mazimal in B, L,C W and R denotes that in-
terval which is magimal in D and contains b--1 then the interval L* defined
by pL* = cLw ¢'R corresponds to L.

Proof. By 4.4 (Corollary) an interval @ corresponds to L. Since
from 4.5 follows pL* ~ L = pQ ~ L = @, by 4.4 it is sufficient to prove
that L* is maximal in B*. We shall do this by showing that pL® is maxi-
mal in pB*. We shall do this by showing that pL* is maximal in pF*.

Obviously (pL*), C pBE* does not hold if ¢cR # @. For ¢R =@ this
inclusion is also false since then B C pL* and by 4.5 (Corollary) R, is not
contained in W.

Now (pL*)_,CpE" is also false. Namely this inclusion implies -
(eL)_; C pE*, which is impossible since ¢L C pQ, ¢L < pQ by 4.5 and
4.2, and p@Q is maximal in pE*.

4.2. If L and @ correspond to each other, then they cannot both be free.

Proof. We set F =8 and assume that L =[a, 3]C S and @
= [g,h]C 8" are free. We shall obtain a contradiction. We take the
notation

T — W\&".

(23) S=\I)wvL, T=Ww\8 B8 =(8/Q)-q.,
Let us prove that
(24) 8, 8" -HIT, T*| —pels, ") = |L|—[Q]+2¢,

where ¢ > 0. From 4.2 follows L < p@. Thug, by 4.5 (tig. 7),
¢L=ILp¢="[a,ph—11CpI", ¢'@=@Q\pL=1I[g,p(b)—1]1C pT.
This implies

(25) [h+1,p@]CT", {b+1,p(@ICT. r@
Consequently h
I8, 8" —18, 8" = |L;, Q_.|—IL, Q|+, PO

where & = 1 if p(g—1)eS and ¢ = 0 otherwise. 7
Since evidently |L,,@Q_,| = |L, Q| we obtain s P b P@

18, 8% —18, 8" = .. Tig. 7
Let us compute |7,7"|—|T,7"|. From (25) follows by b < p(g)
(see fig. 7)
(27) 7, T°|—|T, T*| = l{a}, T"|—|[p+1), T°| = p(a)—h.

Colloguinm Mathomaticum V.2. 13
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Similarly
(28) T, T —IT, T%| = T, {B}| —\T, {g—1}| = b—p(g)+e,

which follows from & < p(a) and (25). Adding (26), (27) and (28) we
easily obtain (24).

Tet us now transpose in the above considerations each letter of
the table

S|\T|L a]b

8T Qg 1 h
with that which stands in the same column. We obtain
(29) I8, 8" +I\T, T*|—uis, s*) = 1Q1—|Ll+27

for # > 0 and
30) S=(\IL)vL,, T=w\§ §= (B\Q @, T'=w\8".

Sinee 8, 8%, T, T" in (24) and (29) satisfy (17) and (18) we arrive
at

o) —1@1+2: <0, 1Q—I|LI+29 < 0.

Tt can easily be seen that here equalities must hold. Thus |5, 8%+
LT, T*| = pls, s*) is true for (23) and also for (30). Butb this is in con-
tradiction to our assumption that ) o attains its

. zeS K*
maximum on the sets 8,8, T, "

4.8. There ewist such disjoint intervals B, ¢, H H * \
and such disjoint intervals F*, G, H*, K* that \

fig.
(gS)F,uGVH:F*uG'uH*UK‘zw’ G* \~
FP<@ <H' <K', H<G<F, £ \
K < 1H] < KT HET < H| |6 5 F
< KU+ 1BY G < (W, Fig.
(31) §S=FuH, 8 =FoH"

and if H # @, then F* = 0.
Proof. Let F be that interval which contains » and is maximal

in 8. Bvidently there exist such intervals @, H that H < G < F, G 8 .

empty or maximal in 7 and H is empty or maximal in § and if
I = W\(F v G v H) # @ then I' is an interval which contains 0 (fig. 9).
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Let us define the, intervals F*, ¢*, H*, K* by
pF* =cF, pG =cGucF, pH =cHoc®, pK =c¢H,
where for L =@ we set ¢l =¢'L = @. Then, by 4.5,
¢F,o'G,cHC pS*; ¢'F,cG,c¢ HCpT".

Let us prove first that I'=@. Indeed from I' # @ follows
F,G,H #@. Since H is free, we find from 4.6 that H" corresponds

cH cH G cG oF cF

0 r H G F n
Fig. 9

to H. Since also @ is free, it follows from 4.5 (Corollary) that ¢G = @.
Thus H* is free, which is in contradiction to 4.7.

Tt remaing to prove that H % @ implies " =—@. Indeed, if H %= @
then & is free. By 4.6 G* corresponds to G If F* # @ then G is free.
This is impossible by 4.7.

4.9. We give the last part of the proof of Lemma 1.
If ' = @ in 4.8, then let us substitute for the letters of the first
line of the table

H|H'| ¢|¢"|F K"
o|o*|w|et 0|0

those which are under them. Then (31) implies (19) and the other asser-
tions of Lemma 1 obviously hold.

For H = @ (then K" = @) we substitute in 4.8 for the letters in
the first line of the table
H*

.Q*

F*

T-‘

G.

¢t

G

@

x

¥

those which stand under them. It is easy to verify that defining Q = @
we obtain the required properties of @, &*, ¥ and ¥*.

5. We are now in a position to prove that (5) implies (6). Let us de-
fine a function P(u, w*, v, ", &) by

Plu,u’, 0,0, & = u(z—u*—o") 4o’ —

—3[(w—u*yw—u' — &) F(uto—u"—o") (utv—u*—v"—§)].
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5.1. There ewisi such numbers w,u”,o,v" that for 1—E/N =,

y = d/N and &=1/N we have

(32) Lo Sttt Suto ey o u,ut, 0,00 20,
(33) lu—o"| < v,

and

(34) - R < P(u,u",v,v", § N

Proof, We gset W = [0, N—%k—1]. Let M be the conditional ma-
ximum of the function |U, U*|+|V, V| under the conditions (10) and
(11). From 3.1 follows

(35) R < M.

We suppose tha this maximum is attained on the se ﬁ U, v,
It s =0, =0, then § =U, 8 =0",T=7, =I7‘ szmsfv
(17) and (18). Consequently
(36) M =p(0, |07).

Let us consider Lemma 1 for s == |U|,s" = |U"|. We find that
(837 |D|+|Q]=s, [B=s5" or [P = s, |PYH|RY| ="
and
(38) || +IP1+1Q] = |87+ [P +|2" = |W].

Let us define u, u", v, " by

V| = Nu, |®] =Nv, |Q=DNu", [P =DNo".

Then the conditions (32) hold by Lemma 1. From (11) follows |s 8" —
—N-+k| < d which implies (33) by (37) and (38). The equalities (21)
and (36) imply M =P(u,u”,v,0", &)N*. Thus, by (35), we obtain
formula (34).

5.2, Let h(w,y, §)

where (32) and (33

be the conditional maximum of P(u, w*, v, ", &)
) are the conditions. Evidently the function
p(&) = h{a,y, &)—h(z,y, 0)
‘patisfies Envp(f) =0 and 9(£) > 0. Computations which we omit’ here
0
give

2

1 9

7t 5y for © 0 <y < u,
1 1
7 B

w

h(a, 7, 0) = {

2

sl

(—v)*  for
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If d > N/3 then d > 8-V by 6 < 1/3, and (6) evidently holds. If
d < N |3, then we define k = N —3d. Thus « = 3y and h(z, y,0) = 3,59
From (34) follows R < (3,5y"+w(&€)} - N°. If we substitute this in (5),
we obtain after some simplifications

5y’ —dy+-2|4||B|/N*—29(§) < 0
Consequently
y > (2~ V4—10(1411B| /¥ —p(8)),
by 5lA||B] < 2N? and »(£) = 0. This implies inequality (6).

Regu par la Rédaction le 15.7. 1957


GUEST




