Similarly, when we cancel in the matrix \tilde{A} the column j_1 for which
$$
\sum_j a_{i_j}a_{i_1}^j < M(\tilde{A})
$$
we get the matrix \tilde{A}' which satisfies the equation $M(\tilde{A}') = M(\tilde{A})$. In virtue of (10) and (9) we also have the inequality
$$
M(\tilde{A}') = M(\tilde{A}) \geq m(A) \geq m(\tilde{A}) \geq m(\tilde{A}').
$$
Hence
$$
M(\tilde{A}') \geq M(\tilde{A}) \geq m(A) \geq m(\tilde{A}').
$$

Repeating, if necessary, the above process of cancelation of rows and columns, we finally get the matrix $B = [b_{i_j}]$, which satisfies the inequality
$$
M(B) \geq M(A) \geq m(A) \geq m(B)
$$
and the equations
$$
\sum_i a_{i_j}y_i = m(B), \quad \sum_j a_{i_j}a_{i_1}^j = M(B)
$$

(i = 1, 2, ..., $p'; j = 1, 2, ..., q'; l \leq q$).

From these equations we immediately find $m(B) = M(B)$, as the left sides of these equations are equal to
$$
\sum_j a_{i_j}a_{i_1}^j y_i,
$$
and hence considering (11b), we get the theorem.

1) a^p is an extremal point for the matrix A.
2) y^p is an extremal point for the matrix B.

ON THE GAME OF BANACH AND MAZUR

BY

S. ZUBRYCKI (WROCLAW)

In this note I am speaking about a game which H. Steinhaus calls a game of Banach and Mazur. This game is defined in the following way.

On an infinite half-line $0 \leq x \leq \infty$ a set Z is given. There are two players, A and B. Player A begins the play by choosing, in the first move, a positive number a_1. Subsequently in the second move, the player B chooses a positive number b_1 smaller than a_1. Then, in the third move, the player A chooses a positive number a_2 smaller than b_1. They do so by turns infinitely many times. When the play is finished, an infinite decreasing sequence
$$
a_1 > b_1 > a_2 > b_2 > \ldots
$$
of positive numbers is obtained. In this sequence the numbers a_i are chosen by the player A and numbers b_i are chosen by the player B. If the number
$$
y = \sum_{i=1}^{\infty} (a_i + b_i)
$$
is in the set Z, the player A wins, if it is not in the set Z, the player B wins.

In other words, the player A chooses a function a which, for each n, given the numbers $a_1, b_1, \ldots, a_{n-1}, b_{n-1}$, prescribes the value of a_n. The player B chooses an analogous function b which, for each n, given the numbers $a_1, b_1, \ldots, a_{n-1}, b_{n-1}$, prescribes the value of b_n. Each choice is made in complete ignorance of the others. The functions a and b are called strategies. They determine the sequence (1) and therefore the winner.

In the theory of games, a game is called closed if for one of the players there exists a strategy which makes him win, no matter what strategy is used by his opponent.

*1) Presented to the Polish Mathematical Society, Section of Wroclaw, the 15. X. 1964.
2) This definition was first given in [2]. In [1] the term "determined game" is used.
It is intuitively felt that for small sets Z the game of Banach and Mauro should be closed to the advantage of the player B. Now the question arises for what sets Z this game is really closed to the advantage of the player B. Turovic [4] has shown that it is so if Z is the set of rational numbers. In this note I wish to generalize his result by proving the following:

Theorem. If Z is a denumerable set, then the game of Banach and Mauro is closed to the advantage of the player B.

Proof. Let us arrange the elements of the set Z in a sequence \(z_1, z_2, \ldots \). For each natural \(k \) let us denote by \(b_k \) the sum \(a_1 + a_2 + \ldots + a_{k-1} + a_k \). We shall prove the theorem by defining a method of choosing the numbers \(b_k \) in order to have \(g \neq a_k \) for each \(k \). It is the following method:

The player B decides at the 2k-th move of the play (that is at his \(k \)-th move) what inequalities must be fulfilled by the numbers \(b_{2k}, b_{2k+1} \), \(b_{2k+2}, \ldots \) in order to have \(g \neq a_k \). These inequalities, imposed upon the numbers \(b_{2k}, b_{2k+1}, b_{2k+2}, \ldots \) in the 2k-th move, depend on the sum \(s_k \) and the number \(a_k \). Namely, the sum \(s_k \) being given, the player B chooses the positive numbers \(\beta_k, \beta_{k+1}, \ldots \) so that, if \(s_k < a_k \), we have the inequality

\[
\sum_{k=1}^{\infty} \beta_k < \frac{(s_k - a_k)}{2};
\]

if \(s_k \geq a_k \), he puts, for instance, \(1 = \beta_k = \beta_{k+1} = \ldots \). Then he chooses \(b_k \) for \(n = k, k+1, \ldots \) so that the inequality

\[
b_k < \beta_k
\]

holds. Thus, if \(s_k < a_k \), then, in view of (1) and (2), we shall have

\[
g = s_k + (a_k + a_{k+1} + \ldots + (b_{2k+1} + a_{2k+2} + \ldots
\]

\[
< s_k + \sum_{k=1}^{\infty} \beta_k < a_k + 2 \cdot \frac{s_k - a_k}{2} = z_k,
\]

and, if \(s_k \geq a_k \) we shall have \(s_k < g \) in virtue of the positiveness of the numbers \(a_k \) and \(b_k \), and thus in both cases we shall have \(g \neq a_k \).

According to the method described, the player B has to choose his \(k \)-th number, \(b_k \), so that the following \(k+1 \) inequalities be fulfilled:

\[
b_k < a_k, b_k < \beta_k, \ldots, b_k < \beta_{k+1};
\]

the first of them following from the definition of the game and the other \(k \) being imposed by the player B himself in his first, second, \ldots, \(k \)-th move respectively.

Since the player B, according to the method described, ensures the inequality \(g \neq a_k \) in his \(k \)-th move, we shall have \(g \neq a_i \) for every \(i \). The theorem is proved.

Note that in this proof we have indicated a whole class of winning strategies of the player B.

References

Mathematical Institute of the Polish Academy of Sciences