

Similarly, when we cancel in the matrix \overline{A} the column j_1 for which

$$\sum_{i} a_{ij_1} x_i^0 < M(\bar{A})^2)$$

we get the matrix \overline{A}' which satisfies the equation $M(\overline{A}') = M(\overline{A})$. In virtue of (10) and (6) we also have the inequality

$$(11) M(\overline{A}') = M(\overline{A}) \geqslant M(A) \geqslant m(A) = m(\overline{A}) \geqslant m(\overline{A}').$$

Hence

(11a)
$$M(\bar{A}') \geqslant M(A) \geqslant m(A) \geqslant m(\bar{A}').$$

Repeating, if necessary, the above process of cancelation of rows and columns, we finally get the matrix $B = \{b_{ij}\}$, which satisfies the inequality

(11b)
$$M(B) \geqslant M(A) \geqslant m(A) \geqslant m(B)$$

and the equations 3)

$$\sum_{j} a_{ij} y_{j}^{0} = m(B), \qquad \sum_{i} a_{ij} x_{i}^{0} = M(B)$$

$$(i = 1, 2, \dots, p' \leq p; j = 1, 2, \dots, q' \leq q).$$

From these equations we immediately find m(B) = M(B), as the left sides of these equations are equal to

$$\sum_{ij} a_{ij} x_i^0 y_j^0,$$

and hence considering (11b), we get the theorem.

· MATHEMATICAL INSTITUTE OF THE WROCLAW UNIVERSITY

ON THE GAME OF BANACH AND MAZUR

 \mathbf{BY}

S. ZUBRZYCKI (WROCŁAW)

In this note*) I am speaking about a game which H. Steinhaus calls a game of Banach and Mazur. This game is defined in the following way.

On an infinite half-line $0 \le x \le \infty$ a set Z is given. There are two players, A and B. Player A begins the play by choosing, in the first move, a positive number a_1 . Subsequently in the second move, the player B chooses a positive number b_1 smaller than a_1 . Then, in the third move, the player A chooses a positive number a_2 smaller than b_1 . They do so by turns infinitely many times. When the play is finished, an infinite decreasing sequence

(1)
$$a_1 > b_1 > a_2 > b_2 > \dots$$

of positive numbers is obtained. In this sequence the numbers a_i are chosen by the player A and numbers b_i are chosen by the player B. If the number

$$g = \sum_{i=1}^{\infty} (a_i + b_i)$$

is in the set Z, the player A wins, if it is not in the set Z, the player B wins.

In other words, the player A chooses a function a which, for each n, given the numbers $a_1, b_1, \ldots, a_{n-1}, b_{n-1}$, prescribes the value of a_n . The player B chooses an analogous function b which, for each n, given the numbers $a_1, b_1, \ldots, b_{n-1}, a_n$, prescribes the value of b_n . Each choice is made in complete ignorance of the others. The functions a and b are called *strategies*. They determine the sequence (1) and therefore the winner.

In the theory of games, a game is called *closed* 1) if for one of the players there exists a strategy which makes him win, no matter what strategy is used by his opponent.

²⁾ x^0 is an extremal point for the matrix \overline{A} .

³⁾ y^0 is an extremal point for the matrix B.

^{*)} Presented to the Polish Mathematical Society, Section of Wrocław, the 15. X. 1954.

¹⁾ This definition was first given in [3]. In [1] the term "determined game" is used.

It is intuitively felt that for small sets Z the game of Banach and Mazur should be closed to the advantage of the player B. Now the question arises for what sets Z this game is really closed to the advantage of the player B. Turowicz [4] has shown that it is so if Z is the set of rational numbers. In this note I wish to generalize his result by proving the following 2)

THEOREM. If Z is a denumerable set, then the game of Banach and Mazur is closed to the advantage of the player B.

Proof. Let us arrange the elements of the set Z in a sequence z_1, z_2, \ldots . For each natural k let us denote by s_k the sum $a_1+b_1+a_2+b_2+\ldots+b_{k-1}+a_k$. We shall prove the theorem by defining a method of choosing the numbers b_i in order to have $g \neq z_i$ for each i. It is the following method:

The player B decides at the 2k-th move of the play (that is at his k-th move) what inequalities must be fulfilled by the numbers b_k , b_{k+1} , b_{k+2} , ... in order to have $g \neq z_k$. These inequalities, imposed upon the numbers b_k , b_{k+1} , b_{k+2} , ... in the 2k-th move, depend on the sum s_k and the number z_k . Namely, the sum s_k being given, the player B chooses the positive numbers $\beta_k^{(k)}$, $\beta_{k+1}^{(k)}$, ... so that, if $s_k < z_k$, we have the inequality

(2)
$$\sum_{k=k}^{\infty} \beta_k^{(k)} < (z_k - s_k)/2;$$

if $z_k \leqslant s_k$, he puts, for instance, $1 = \beta_k^{(k)} = \beta_{k+1}^{(k)} = \dots$ Then he chooses b_n , for $n = k, k+1,\dots$ so that the inequality

$$(3) b_n < \beta_n^{(k)}$$

holds. Thus, if $s_k < z_k$, then, in view of (1) and (2), we shall have

$$g = s_k + (b_k + a_{k+1}) + (b_{k+1} + a_{k+2}) + \dots$$

$$< s_k + 2 \sum_{i=k}^{\infty} \beta_i^{(k)} < s_k + 2 \cdot \frac{z_k - s_k}{2} = z_k,$$

and, if $z_k \leq s_k$ we shall have $z_k < g$ in virtue of the positiveness of the numbers a_n and b_n , and thus in both cases we shall have $g \neq z_k$.

According to the method described, the player B has to choose his k-th number, b_k , so that the following k+1 inequalities be fulfilled:

$$b_k < a_k, b_k < \beta_k^{(1)}, \ldots, b_k < \beta_k^{(k)},$$

the first of them following from the definition of the game and the other k being imposed by the player B himself in his first, second, ..., k-th move respectively.

Since the player B, according to the method described, ensures the inequality $g \neq z_k$ in his k-th move, we shall have $g \neq z_i$ for every i. The theorem is proved.

Note that in this proof we have indicated a whole class of winning strategies of the player B.

REFERENCES

- [1] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behaviour, Princeton 1944.
- [2] M. Reichbach, Ein Spiel von Banach und Mazur, Colloquium Mathematicum (in press).
- [3] H. Steinhaus, Definicje potrzebne do teorii gier i pościgu, Złota Myśl Akademicka, Lwów 1929.
- [4] A. Turowicz, Sur une propriété des nombres irrationnels, Annales Polonici Mathematici 2.1 (1955), p. 103-105.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

²) Recently M. Reichbach [2] has shown that there exists a perfect set Z of measure zero for which the game of Banach and Mazur is closed, but to the advantage of the player A.