188

COMMUNICATIONS

 $\varphi_0(x) = f(x)$, also das Nullelement der Gruppe Γ ergeben. Mithin würde g ein Element k-ter Ordnung darstellen, im Widerspruch damit, daß Γ torsionsfrei ist.

ZITIERTE LITERATUR

- [1] J. Braconnier, Sur les groupes topologiques localement compacts, Journ. de Math. Pures et Appl. 27 (1948), S. 1-85.
- [2] D. van Dantzig, Über topologisch-homogene Kontinua, Fund. Math. 15 (1930), S. 102-125.
- [3] B. Eckmann, Über monothetische Gruppen, Comm. Math. Helv. 16 (1943), S. 249-263.
- [4] B. Gelbaum, G. K. Kalisch and J. M. H. Olmsted, On the embedding of topological semigroups and integral domains, Proc. Amer. Math. Soc. 2 (1951), S. 807-821.
- [5] М. И. Граев, Теория топологических групп I, Уснехи Мат. Наук 5 (1950), S. 3-56.
 - [6] P. R. Halmos, Measure Theory, New York 1950.
 - [7] Comment on the real line, Bull. Amer. Math. Soc. 50 (1944), S. 877-878.
- [8] and H. Samelson, On monothetic groups, Proc. Nat. Ac. Sci. USA 28 (1942), S. 254-258.
- [9] S. Hartman, Über die Verteilung der Fastperioden von fastperiodischen Funktionen auf Gruppen, Stud. Math. 15 (1955), S. 56-61.
- [10] E. Marczewski et C. Ryll-Nardzewski, Théorèmes ergodiques et leurs applications, Coll. Math. 2 (1951), S. 109-123.
- [11] E. v. Kampen, Locally bicompact Abelian groups, Ann. of Math. 36 (1935).
 S. 436-448.
 - [12] J. Kaplansky, Infinite Abelian groups, Ann Arbor 1954.
 - [13] А. Г. Курош, Teopus групп, Mockba 1953 (zweite Ausgabe).
 - [14] Л. С. Понтрягин, Непрерывные группы, Москва 1954 (zweite Ausgabe).
- [15] A. Shields, Sur la mesure d'une somme vectorielle, Fund. Math. 42 (1955), S. 57-60.
- [16] H. Weyl, Über die Verteilung von Zahlen mod Eins, Math. Ann. 77 (1916), S. 313-352.

MATHEMATISCHES INSTITUT DER POLNISCHEN AKADEMIE DER WISSENSCHAFTEN

SUR UNE PROPRIÉTÉ D'UNE CLASSE DE MESURES ABSTRAITES

PAR

J. POPRUŽENKO (ŁÓDŹ)

Soit ${\mathfrak n}$ un nombre cardinal indénombrable. Désignons par $I({\mathfrak n})$ l'hypothèse suivante:

- $I(\mathfrak{n})$ Il n'existe aucun aleph inaccessible (\mathfrak{n}) $\leq \mathfrak{n}$.
- S. Ulam ([5], p. 223) a démontré que si l'hypothèse $I(2^{80})$ est vraie, tout ensemble de mesure extérieure (lebesguienne) positive contient une infinité non dénombrable de sous-ensembles disjoints de mesure extérieure positive.
 - W. Sierpiński ([2], p. 125) en a déduit le théorème suivant:
- Si l'hypothèse $I(2^{80})$ est vraie, tout ensemble linéaire indénombrable E contient une infinité non dénombrable d'ensembles disjoints, dont chacun a une mesure extérieure (lebesquienne) égale à celle de l'ensemble E.

Le but de la présente note est de généraliser ce théorème: je vais démontrer que *tout* ensemble indénombrable jouit d'une pareille propriété relativement à une vaste classe de mesures abstraites.

Soient E un ensemble de puissance \mathfrak{n} , $\varphi(X)$ une mesure extérieure définie sur E, disparaissant ponctuellement et telle que $\varphi(E_1)<+\infty$ pour un certain sous-ensemble E_1 de E de puissance \mathfrak{n} . On sait qu'une telle fonction d'ensemble définit, à l'aide de l'équation bien connue de Carathéodory, le σ -corps d'ensembles mesurables φ , sur lequel elle est σ -additive, et que tout ensemble de mesure extérieure 0 est mesurable φ (voir p, ex. [1], p, 424-430).

Désignons par \mathfrak{m}_{φ} le premier aleph tel qu'il existe une famille de puissance \mathfrak{m}_{φ} d'ensembles de mesure $\varphi=0$, dont la somme est un ensemble de mesure extérieure $\varphi>0$. On voit que \mathfrak{m}_{φ} est un aleph régulier satisfaisant, dans les conditions posées, à l'inégalité $\mathfrak{R}_1 \leqslant \mathfrak{m}_{\pi} \leqslant \mathfrak{n}$.

¹⁾ Un aleph κ_a est dit *inaccessible* s'il est régulier (c'est-à-dire, s'il n'est pas la somme de moins de κ_a nombres cardinaux, dont chacun est κ_a), et si son indice κ_a est un nombre ordinal de κ_a 0 espèce.

Cela étant, désignons par K la classe de toutes les fonctions d'ensemble $\varphi(X)$ définies pour $X \subset E$ et assujetties aux 5 conditions suivantes:

1° On a
$$0 \le \varphi(X) < +\infty$$
 pour tout $X \subseteq E$, et $\varphi(E) > 0$;

$$2^{\circ}$$
 Si $X_1 \subset X_2$, on $\alpha \varphi(X_1) \leqslant \varphi(X_2)$;

$$3^{\circ} \ \varphi \left(\sum_{n=1}^{\infty} X_n \right) \leqslant \sum_{n=1}^{\infty} \varphi \left(X_n \right) \ powr \ toute \ suite \ \left\{ X_n \right\}, \ X_n \subset E;$$

 $4^{\circ} \varphi(p) = 0$ pour tout élément $p \in E$;

5° Il existe une famille de puissance $<\mathfrak{m}_{\varphi}$ d'ensembles mesurables φ^2) telle que, quels que soient $X\subset E$ et $\varepsilon>0$, les inégalités $\varphi(M)<\varphi(X)+\varepsilon$ et $\varphi(XM)>\varphi(X)-\varepsilon$ soient vérifiées par au moins un ensemble M appartenant à cette famille.

Vu les conditions $1^{\circ}-3^{\circ}$, on a ainsi défini sur E une classe de mesures extérieures satisfaisant à certaines conditions spéciales $(4^{\circ}-5^{\circ})$, et l'on ne sait pas a priori si cette classe n'est pas vide.

Démontrons que la classe K n'est jamais vide, si n > 280.

En effet, supposons d'abord que $\mathfrak{n}=2^{\aleph_0}$. La mesure extérieure de Lebesgue, considérée dans l'intervalle $[0\leqslant x\leqslant 1]$, appartient à K, car la famille (dénombrable) de toutes les sommes finies d'intervalles fermés d'extrémités rationnelles satisfait à la condition 5° ([2], Lemme I, p. 125). L'assertion résulte alors du fait que les conditions 1°-5°, ainsi que la propriété d'un ensemble d'être mesurable, sont invariantes par rapport aux transformations biunivoques de l'espace.

Si $\overline{E} = \mathfrak{n} > 2^{\aleph_0}$, il existe un sous-ensemble E_1 de E de puissance 2^{\aleph_0} . $\psi(X)$ étant une fonction définie sur E_1 et satisfaisant aux conditions $1^{\circ} \cdot 5^{\circ}$ — une telle fonction existe d'après ce qui précède — on pose $\varphi(X) = \psi(XE_1)$.

On vérifie sans peine que la fonction $\varphi(X)$, définie sur E, satisfait encore aux mêmes conditions. Elle appartient donc à K.

Ceci établi, nous pouvons énoncer le théorème suivant:

THÉORÈME. Prémisses:

1* L'hypothèse I(n) est vraie;

 $2^* \ \overline{\overline{E}} = \mathfrak{n} \geqslant 2^{\aleph}$:

 $3^* \varphi(X) \in K$.

Thèse: Il existe dans tout sous-ensemble E_0 de E une infinité de puissance $\geqslant \mathfrak{m}_{\varphi}$ d'ensembles disjoints (qui peuvent être vides), dont chacun est de même mesure extérieure φ que l'ensemble E_0 .

La démonstration de ce théorème s'appuie sur les propositions auxiliaires qui vont suivre.

LEMME I. $\varphi(X)$ satisfaisant aux conditions 1°-4°, l'hypothèse $I(\mathfrak{n})$ entraîne la conséquence suivante: Il existe dans tout ensemble X_0 , tel que $\varphi(X_0)>0$, une infinité de puissance $\geqslant \mathfrak{m}_{\varphi}$ de sous-ensembles disjoints de mesure extérieure φ positive.

Démonstration. Posons $\mathfrak{m}_{\varphi} = \mathbf{x}_{\beta}$. Cet aleph étant régulier, l'hypothèse $I(\mathfrak{n})$ entraîne l'égalité $\beta = a+1$.

Supposons maintenant que toute famille formée de sous-ensembles disjoints de X_0 , de mesure extérieure φ positive, soit de puissance $\langle \mathfrak{m}_{\varphi} = \aleph_{\alpha+1}$. Elle serait donc nécessairement de puissance $\langle \mathfrak{R}_{\alpha} \rangle$. Dans ce cas il existerait, d'après le théorème de recouvrement de Sierpiński ([3], p. 214), généralisé par Tarski ([4], p. 133), une famille de puissance $\langle \mathfrak{R}_{\alpha} \rangle$ de sous-ensembles de X_0 de mesure $\varphi = 0$ recouvrant X_0 à un ensemble de puissance $\langle \mathfrak{R}_{\alpha} \rangle$ près. On aurait donc, d'après la définition du nombre \mathfrak{m}_{φ} et l'inégalité $\mathfrak{R}_{\alpha} \langle \mathfrak{m}_{\varphi}, \varphi(X_0) = 0$, contrairement à la condition $\varphi(X_0) > 0$. Le Lemme I est ainsi démontré.

Les raisonnements ultérieurs différent peu de ceux de Sierpiński. En particulier, on obtient nos Lemmes II-IV de ses Lemmes II-IV de [2] (p. 126-130) en y remplagant les mots "dénombrable", resp. "indénombrable", par " $<\mathfrak{m}_{\varphi}$ ", resp. " $\geqslant\mathfrak{m}_{\varphi}$ ", ce qui n'altère pas les démonstrations en vertu de la régularité du nombre \mathfrak{m}_{φ} .

LEMME II. Soit $\varphi \in K$. Φ étant une famille quelconque de puissance $\geqslant \mathfrak{m}_{\varphi}$, dont les éléments sont des sous-ensembles de E de mesure extérieure $\varphi > 0$, il existe un ensemble M_0 , mesurable φ et tel que $\varphi(M_0) > 0$, ayant cette propriété: quel que soit $\varepsilon > 0$, la famille Φ contient une infinité de puissance $\geqslant \mathfrak{m}_{\varphi}$ d'ensembles X pour lesquels $\varphi(XM_0) > \varphi(M_0) - \varepsilon$.

LEMME III. $\{\Phi_n\}$ étant une suite infinie d'ensembles quelconques de puissance $\geq \mathfrak{m}$ $(\mathfrak{m} \geq \aleph_1)$, il existe une suite infinie $\{\Psi_n\}$ d'ensembles disjoints tels que $\overline{\Psi}_n \geq \mathfrak{m}$ et $\Psi_n \subset \Phi_n$ pour tout n naturel.

LEMME IV. Soit $\varphi \in \mathbf{K}$. Φ étant une famille de puissance $\geqslant \mathfrak{m}_{\varphi}$, formée de sous-ensembles disjoints de E de mesure extérieure $\varphi > 0$, il existe un ensemble M_0 , mesurable φ et tel que $\varphi(M_0) > 0$, et une famille Ψ de puissance $\geqslant \mathfrak{m}_{\varphi}$, formée d'ensembles disjoints et vérifiant les relations $\Psi \subset \Phi_{\sigma}$ et $\varphi(XM_0) = \varphi(M_0)$ pour tout $X \in \Psi$.

La démonstration de ces Lemmes est indépendante de l'hypothèse $I(\mathfrak{n})$. Les Lemmes II et III ne sont nécessaires que pour la démonstra-

²⁾ La mesurabilité est toujours comprise au seus de Carathéodory.

^{*)} Voici ce théorème: Soit Z un ensemble de puissance 11, m- un nombre cardinal \leqslant 11.

L'hypothèse I (n) supposée vraie, si l'on divise tous les sous-ensembles de Z en deux classes, Q et R, de sorte que toute famille d'ensembles disjoints de la classe Q soit de puissance $\leq m$, il existe une famille de puissance $\leq m$ d'ensembles de R dont la somme recouvre Z à un ensemble de puissance $\leq m$ près.

tion du Lemme IV, qui est d'importance fondamentale. En nous appuyant sur les Lemmes I et IV, nous pouvons appliquer la méthode de Sierpiński aux espaces abstraits.

Démonstration du Théorème. Soient E un ensemble abstrait de puissance $\mathfrak{n}\geqslant 2^{\aleph_0},\ E_0$ un sous-ensemble indénombrable de E. On a, comme nous l'avons vu, $\mathbf{K}\neq 0$. Soit $\varphi(X)$ une mesure extérieure quelconque appartenant à \mathbf{K} . Le problème étant trivial lorsque $\varphi(E_0)=0$, nous pouvons supposer que $\varphi(E_0)>0$. Dans ce cas, il existe, d'après 1* et le Lemme I, une infinité de puissance $\geqslant \mathfrak{m}_{\varphi}$ de sous-ensembles disjoints de E_0 de mesure extérieure $\varphi>0$.

En vertu du Lemme IV, il existe au moins un ensemble $M=M_0$, mesurable φ , jouissant des deux propriétés suivantes:

(2) $\varphi(MX) = \varphi(M)$ pour une infinité de puissance $\geqslant \mathfrak{m}_{\varphi}$ de sous-ensembles disjoints X de E_0 . Soit

$$M_0, M_1, \ldots, M_{\xi}, \ldots \quad (\xi < \Theta)$$

une suite transfinie formée de tous les ensembles mesurables φ satisfaisant aux conditions (1)-(2); soit

(4)
$$M_{a_0} = M_0, M_{a_1}, \ldots, M_{a_{\lambda}}, \ldots (\lambda < \mu)$$

la suite saturée d'ensembles disjoints deux à deux, extraite de (3) et contenant l'ensemble M_0 . D'après (1) et l'inégalité $\varphi(E) < +\infty$, la suite (4) est au plus dénombrable. Nous la supposons rangée en une suite infinie $\{H_n\}$.

Il résulte de la définition de (4) qu'il n'existe dans (3) aucun ensemble M tel que

$$M\sum_{n=1}^{\infty}H_n=0$$

ou, ce qui revient au même, tel que

$$\varphi\left(M\sum_{n=1}^{\infty}H_{n}\right)=0.$$

Or, je dis que ceci entraîne l'inégalité

(5)
$$\varphi(E_0) \leqslant \sum_{n=1}^{\infty} \varphi(H_n).$$

En effet, supposons le contraire et posons

$$E^0 = E_0 - \sum_{n=1}^{\infty} H_n.$$

Comme on a, d'après notre supposition, $\varphi(E^0) > 0$, il existe (en vertu des mêmes prémisses que plus haut) un ensemble mesurable $\varphi M = M^0$ vérifiant (1) et (2), le symbole E_0 y étant remplacé par E^0 . D'après $E^0 \subset E_0$, M^0 est donc un terme de la suite (3). D'autre part on a

(6)
$$M^{0}E^{0} = M^{0}H_{0} - M^{0}\sum_{n=1}^{\infty}H_{n} \subset M^{0} - M^{0}\sum_{n=1}^{\infty}H_{n} \subset M^{0}$$

et, d'après l'égalité $\varphi(M^0) = \varphi(M^0X)$, vérifiée par certains $X \subset E^0$,

(7)
$$\varphi(M^0) = \varphi(M^0 E^0).$$

Les formules (6) et (7) donnent

$$\varphi(M^0) = \varphi(M^0 E^0) \leqslant \varphi\left(M^0 - M^0 \sum_{n=1}^{\infty} H_n\right) \leqslant \varphi(M_0),$$

d'où $\varphi(M^0\sum_{n=1}^{\infty}H_n)=0$, ce qui est impossible, comme nous l'avons vu.

La formule (5) étant ainsi établie, la démonstration s'achève comme il suit.

D'après 1*, on a $\mathfrak{m}_{\sigma} = \aleph_{\alpha+1}$ ($\alpha \geqslant 0$). Soit $\omega_{\alpha+1}$ le plus petit nombre ordinal de puissance $\aleph_{\alpha+1}$. Les ensembles H_n appartenant à (3), soient $\{X_{\mathfrak{k}}^n\}$, $0 \leqslant \xi < \omega_{\alpha+1}$, les suites transfinies satisfaisant à (2) pour $M = H_n$ ($n = 1, 2, \ldots$). Posons

$$E_{\xi} = \sum_{n=1}^{\infty} H_n X_{\xi}^n \quad (0 \leqslant \xi < \omega_{\alpha+1}).$$

On vérifie sans peine, d'après la définition des ensembles H_n et les formules (2) et (5), que $E_{\delta} \cdot E_{\delta'} = 0$ pour $\xi \neq \xi'$ et que

$$\varphi(E_{\xi}) = \sum_{n=1}^{\infty} \varphi(H_n X_{\xi}^n) = \sum_{n=1}^{\infty} \varphi(H_n) \geqslant \varphi(E_0).$$

Comme $E_0 \supset E_{\xi}$, il vient $\varphi(E_{\xi}) = \varphi(E_0)$. Les ensembles E_{ξ} ($0 \leqslant \xi < \omega_{\alpha+1}$) satisfont donc aux conditions de notre Théorème, qui se trouve ainsi démontré.

194

COMMUNICATIONS

PUBLICATIONS CITÉES

[1] H. Hahn, Theorie der reellen Funktionen, Berlin 1921.

[2] W. Sierpiński, Sur une propriété des ensembles linéaires quelconques, Fund. Math. 23 (1934), p. 125-134.

[3] - Sur un théorème de recouvrement dans la théorie générale des ensembles. Fund. Math. 20 (1933), p. 214-220.

[4] A. Tarski, Drei Überdeckungssätze der allgemeinen Mengenlehre, Fund.

Math. 30 (1938), p. 132-155.

[5] S. Ulam, Über gewisse Zerlegungen von Mengen, Fund. Math. 20 (1933). p. 221 - 223.

ON A PERFECT SET

RV

P. ERDÖS (BUDAPEST) AND S. KAKUTANI (NEW HAVEN)

(From a letter of P. Erdös to E. Marczewski)

... Enclosed I send you our promised solution to your problem 1). The problem is this: A linear set S is said to have property (S_n) if there exists an η_n such that if $x_1 < x_2 < \ldots < x_n, x_n - x_1 < \eta_n$ are any n real numbers, there exist n elements y_1, y_2, \ldots, y_n of S, congruent to x_1 , x_2, \ldots, x_n . You ask: Does there exist a perfect set S of measure 0 having property (S_3) ?

Kakutani and I have constructed a perfect set S of measure 0 having property (S_n) for all $n \ge 2$. Our set S is defined as the set of non-negative numbers

$$\sum_{k=2}^{\infty} \frac{a_k}{k!}, \quad 0 \leqslant a_k \leqslant k-2.$$

It is easy to see that the measure of S is 0 (every number x, $0 \le x \le 1$, is uniquely of the form

$$\sum_{k=2}^{\infty} \frac{a_k}{k!}, \quad 0 \leqslant a_k \leqslant k-1).$$

Thus we only have to prove that S has property (S_n) for all $n \ge 2$.

To show that S has property (S_n) it clearly suffices to show that . if we put $x_2-x_1=z_1, x_3-x_1=z_2, \ldots, x_n-x_1=z_{n-1}, z_{n-1}<\eta_n$, there exists a number z_0 in S such that all the numbers $z_0 + z_i$, $1 \le i \le n-1$, are also in S. Assume $\eta_n < 1/(m-1)!$ where m will be determined later. Then clearly

$$z_i = \sum_{k=m}^{\infty} \frac{b_k^{(i)}}{k!}, \quad 0 \leqslant b_k^{(i)} \leqslant k-1, \quad 1 \leqslant i \leqslant n-1.$$

¹⁾ E. Marczewski, P 125, Colloquium Mathematicum 3.1 (1954), p. 75.