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?Nhere wl' ?.nd w, are unknown. The hypothesis Hj(w,=w,=w), where w
Is a specified mumber, can be tested by observing the variable {(n,,n,)
def?ne.sd by (4), which — if the assumption (c) and the hypothesis H, a,re;
satisfied — is asymptotically normal
Ny — N
N 2 1 30,5 —D
[ (M +mp)? " ] ‘

) EX.ANEPI:E 4. The variable £(1) is distributed according to the neg-
ative binomial law, given by the formula

1-p, ]/l —w
T (my g0

. AN
P[5(1)=7]=(—1)1(~ j) w (1—w),
where j=0,1,2,..., i>0, 0<w<1. Here we have

wi
(1—w)®

- T.he vafriable {(4, %) defined by (4)—if the assumption (e) is
satistied — is asymptotically normal

[%—% W' [ A w]P
(24P (1—w)™? " (1—e0)'~? ]

Mm(A)=—; ()=

Our .theorem can thus be applied in particular to festing parametric
hy.poth-esmf concerning Pascal variables since they have a negative bino-
mial distribution with an integer value A
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STATISTICAL ESTIMATION OF PARAMETERS IN MAREOV
PROCESSES

BY
0. LANGE (WARSZAWA)

1. Methods of estimation. Consider a simple Markov process with
the transition function

(1.1) Fltay @03 t5, x5 01, Oy - 0).

The transition function expresses the conditional probability (for discrete
processes), or the conditional probabiliby density (for conftinuows proces-
ses), that the random variable &(2) will assume the value at the mo-
ment #, if its value is @, at the moment %,. This function contains cer-
tain parameters @,,0,,... the values of which have to be determined
from statistical observation.

In Markov processes this can be done by the method of maximum
likelihood, which consists in choosing the estimators of the parameters
6,,0,,... so as to maximize the probability or probability density of
an observed set of realizations of the stochastic process. The method
of maximum likelihood can be applied in several ways.

Tf the realizations of the stochastic process can be repeated many
times (as, for instance, in the laboratory or in industrial production}
we take n independent realizations of the process and perform on each
realization a pair of observations at the moments, say, % and #). The
superscript r stands for the 7-th realization (r=1,2,...,n). Denote
by #” the result of the observation carried out on the r-th realiza-
tion at the moment 7, where i=0,%. Since the pairs of observations
are independent, their Lkelihood function is

n
(1.2} Iy=[]105, of; , 2’5 01, 6,,...).
r=1
The estimators of @y, @,,..., which will be denoted by él s (:)2,.. ., are .de-
termined from the condition I;=max.
This way of using the method of maximum likelihood will be called
eross section estimation, or space estimation (over the space of realizations

of the process). The estimators thus derived will be called cross section
or space estimators.
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In cases, however, where the realization of the stochastic process
cannot be repeated (as, for instance, in metleorological processes, in pro-
cegses of growth of human populations, in socio-economic processes)
we have to use the method of maximum likelihood in a different way
which will be called historical estimation or time series estimation. ’1‘1'1(1
estimators thus obtained will be called, accordingly, historical or time
estimators.

Higtorical or time series estimation consists in perfoming a number
of observations on a single realization of the stochastic process. Let the
observations be made at the moments #”,#",...,47. The results of the
observatmps then form the time series #”, (", ..., 2{". The superscript r
serves to identify the realization on which the observatious are perfor-
med; since, in this case, only one realization is accessible to observation
it may also be omitted. In view of the process being Markovian, the like-’
lihood function of the observed time geries ig

k
(1.3) Lz=_[]1f(t§’3u 221510, 2’5 01, 6s,...).

i
The estimators 6,, @,,... are determined from the condition IL,=max.

Finally, situations may occur where it is possible to perforﬁm higto-
rical observations on a set of independent realizations of the same sto-
chastic process. Let there be # such realizations and k-1 observations per-
f)(;r;lrzd 1());1 ;3)(31;ha;tr1;1;elmo_ments tﬁ”,tﬁ’),.'..,tg’ respectively. Denoting, as

ore, ¢ ult of the observation performed on the r-th reali-
zation at the moment £, we have the following observation matrix:

K
a e ... P
" .
(1.4) o) 2 ..
o™ @™ ... g

'Thfz- rows of the matrix are time series corresponding o the various
realizations of t.he process, the columns are cross sections of obrervations
p'erformed on. dlf'ferent realizations. It should be noted that the observa-
tions corrgspondmg to a given column need not be simultaneous, for
the l.c—l-l observgtlops performed on each realization may he effectad
on dlfferent: realizations at different moments. Thus the " COTTespOon-
gmg tto & given subscript ¢ but to different superseripts r may Dbe dif-
erent. ‘

The likelihood function of the above observation matrix is

n ok
(1.5) L=]]
1

() ) L) (),
Foal fom FEZy a2y 5 4 %, 'l’f'rr); 6y, 0,,...).
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The estimators é,, éz,... are determined from the condition L=max.
This way of determining the estimators will be called complete estimation
and the estimators thus obtained will be called complete estimators.

Complete estimators maximize the probability or probability density
of the whole observation matrix (1.4), while historical and cross section
estimators maximize only the probability or probability density of a par-
ticular row or column, respectively. Historical estimation and cross sec-
tion estimation may thus be treated as speeial cases of complete estima-
tion corregponding to n=1 and k==1, respectively. We shall, therefore,
henceforth consider the general case of complete estimation.

In the present paper we shall consider the sbatistical estimation of
parameters in the following elementary Markov processes: the simple
Poisson process, the Gaussian process with stationary independent incre-
ments which is usually called the Brownian motion process, the linear
“hirth process” and the linear “death process”. Finally we shall consider
the case of estimating transition probabilities in simple Markov chains.

2. The simple Poisson process, For the simple Poisson process the
transition funetion (1.1) takes the form

U(tii?i__i)]ﬂ

(2.1) Flti—tq,254)= T expl— At — 1)1
Here
(2.2) =Ly &1

denotes the number of changes of state occuring during the period
t;—t;_1;%; and #;_, denote the number of changes of state taking place
during the periods from ¢ to ?; and from 0 to 1;_,, respectively. Obvious-
ly @; and @;_, are integers. The number of changes of state expected du-
ring the period #;—1;,_ i8 B

Eoy=A(t;—1_1),

where 1 is a constant. The simple Poisson process is & homogeneous pro-

cess with independent increments.
The logarithm of the likelihood function is

n kO
logL= 3, Ylog(t—#11,4";4)

r=14i=1

n &
=33 [20Mog A -2 log (1) —1§)) —log (27 1) — A" —#21)].

r=1i=1
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Putting

dlog L

Y

and taking account of (2.2), we find the estimator of 1

k3

D)

(2 4) A=

30— )

r=1

The estimator 1 depends only on the results of the observations
performed at the moments #” and #° and on the length of the periods
1) — P elapsing between these observations. The results of observations
carried out at intermediate moments #7,4",..., 47, do not affect the value
of the estimator. Thus it ig sufficient to perform on each realization of
the process only one pair of observations, all intermediate observations
are redundant.

In view of the reproductive property of the Poisson distribution
the sampling distribution of

n
3 (@) —a) =

r=1

kJ
23—

is given by the probability function

[23 @

re=1
[ 3 dp—i)]:

Consequently, the expectation of 1 is

] E (t'”——t"’)
(2.5) ]

exp[ )_2 g‘) t"’]
r=l

(2.6) Bi=2

and the variance of A is
Vﬁ=7—1*’“ .
2 (P —18)

Feal

(2.7)

The estimator i is thus unbiased and con;
sigtent. Its saropling va-
riance deg;en(};s) only on the number of realizations and the length of the
pemods %’ —1ty’, and i8 not affected by observations at intermediate mo-
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ments. Introducing the average period between the pairs of observa-
tions performed on each realization

n

1
{2.8) t—ty = ;;(tg)‘tg))y
we have
~ A
{2.9) Vis=m———.
(g —1)

The efficiency of the estimator, therefore, can be increased either
by augmenting the number of realizations considered or by lengthening
the average period between the two observations carried ouf on each
realization. Additional observations at intermediate moments are use-
less.

3, The Brownian motion process. In the Brownian motion pro-
cess the transition function (1.1) is

3.1) [2—p(t—te )T }’

1
— exp{ e
oV 2m(t;—1t;_1) 20 (t '_tz—— )

where z; is the change of state taking place during the period #;—;_
Denoting the state at the moments t and &;_; by #; and 2;_,, respectlvely,
we have

{3.2)

f(ti‘ti~17zi§/-‘762): ]/

2= By— Py_1-

Here #; and 2, , may be real numbers.
Thie expected change of state during the period #;—%;_, is

Bey=p(t;—ta)
and the variance of the change of state during that period is

E[Z,,, ¥ (t '_t‘n—-l)] = ( i-—-l)?
where p and o? are constants. The Brownian motion process is thus a Gaus-
gian process with stationary independent incrememnts.

The logarithm of the likelihood function is

n ok
(3.3) log L= 3 Mlogj (!~ 50,0
[ — p (i — 42, ]2}

n k 1 1
- @ _ oy o T B et
=%3 {—-logo—— 5 log (%) — - log(t” — 1i0,) — B — i)

r=1 i=1
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Putting

dlogL

e gL 0

dp

and taking account of (3.2), we obtain the estimator of p

7

2

4

b

” (@l —af?)
AT
2. ==

()~

baei L

r=1

The estimator of ¢ is obtained by putting

I

?logL 0
o’

and substituting £ for w in this equation. We obtain

n k& ~
(3.5) Pt by [(28” —a2y) —p(? — 20 P
nk & & 40, ’

o Similarly to the estimator i in the Poigson .process, the estimator j
is mdependent of the results of observations carried out at moments in-'
termediate between #° and . By virtue of the reproductive property
of the norma}l distribution it is normally distributed with exp("ctation

(3.6) Bi=p
and variance
’ N o
(3.7) V=
2 ) —1)
r=1

The estimator g is thus unbiased and consistent. Its sampling variance
erends only on the number of realizations and on the length of the pe-
riods 9 —1{?, and is not affected by additional observations at inter-
mediate moments. By writing it in the form o

2

(3.8) Vi=—"

=

W (ty—to)
Wh(?l:e t— 1%, 18, as in (2.8), the average period between the pairs of obser-
vations performed on each realization, we find that the sampling variance

of 4 is inversely proportional to the izati
number of realizations taken int
account and to the average period mentioned. e
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Unlike gz, the estimator & depends on the results of the observa-
tions at all moments in the intervals 1’ —i§”, as well as on the choice of
these moments. It is distributed according to the o law with nk—1 de-
grees of freedom. In view of the known properties of the ¥° distribution,
the expectation and the sampling variance of o® are, respectively, ’

wk—1 ,

BE¢*= —— 0,

(3.9) nk

Vi 24"
o=~

(3.10) wh—1

Thus the estimator ¢ it not unbiased. An unbiased estimator, how-
ever, can be obtained by taking
wk .,
= .
nk—1

(3.11)

Because of (3.10) o2, as well as the expression (3.11), are consistent esti-
mators. Their efficiency increases (roughly) in proportion both o the
number of realizations considered and to the number of observations
performed on each realization.

4. Testing hypotheses. Since the sampling distribution of the esti-
mator 4 in the simple Poisson process and of the estimators z and o”
in the Brownian motion' process are known, hypotheses concerning
values of the corresponding parameters can be tested by means of the
Neyman-Pearson procedure.

In the simple Poisson process and in the Brownian motion process
the number of changes of state or the magnitude of the change of the
state, respectively, oceurring in not overlapping time intervals are inde-
pendent. Consequently the x* criterion can be applied to test the bypothe-
sis that one or several observed time series are realizations of a simple
Poisson process or of a Brownian motion process. Furthermore the hy-
pothesis that 2 set of observed time series arve realizations of the same
Poisson or Brownian motion process, . ¢. of a process with the same pa-
rameter values, can be tested by the wsual procedure of analysis of va-
riance.

5. Linear “birth” and “death” processes. The transition. funetion
of the linear “birth process’ is ’

(5.1) Flliss®i1; by Bi30)
_ (mi“ 1 )6—011«1 L
By— b1
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Here ; and #,_,, which must be integers, denote the number of indivi-
duals in the ‘“‘populations” at the moments #; and #_,, respectively. The
propa.bi]ity of any one individual ‘“‘giving birth” to a new indiv.idual
during the infinitesimal period d¢ is adt, where a is a constant. Tt can

be shown that the number of individuals expected at the moment ¢ is
{5.2) By ¢*Gb-0),

The logarithm of the likelihood funetion is

n ok n k&
(")
log L= 3, S t0g /ol 00750 = 3] Sthog( 72, )
re=l i=1 =1 =1 w1(. —my—)l

(5.3)

— a2 (6 —12,) + (@ — ) log [1— P “3"—’%'—’1>]1 .

The estimator & is obtained from the equation

dlogl
da

{5.4) 0.

In order to obtain a workable solution of (5.4) we shall assume that

31111 observations are carried out at equal intervals of length v. We have
en

0 4=

for all »’s and +'s, and we obtain

(5.5) O = T=12=1
. n k )
2 2o
Pe=1 ==l
whence

A 1 "ok n k
(5.6 — ( .
(5.6) a=- (logé1 ¢=§1 M —log 3 Na|.

el da=l
This result was obtained by David G. Kendalll),
For the linear “death process” the transition function is

i1

(5.7 Fllicn, @iast, 05 ) :( ) TP [ (g, gy ) — L

&y

Y) D. G. Kendall, Stochastic Processe
K.e: , s and Populali '
the Royal Statistical Society, Series B, 9 (1949), p. (;2;;‘““0” rovth, Joumal of

. iom°®
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where a; and #;_, have the same meaning as before. Note, however, that
in the “death process” @;<(#; ,, whereas in the “birth process” ;2; ;.
The constant # is defined by pd¢ being the probability that any one in-
dividual “dies” during the infinitesimal period d:. The number of indi-
viduals expected at the moment #; i8

(8.8) Ba; =676,

By a procedure similar as in the “pirth process” we find that the
estimator f satisfies the relation

(5.9) of =T —
> Xl
r=1 i=1
whence
N 1 n k n k .
(5.10) B =~(1og2 S afl,—log 3 3'a ’)-
T r=1 i=1 r=1 i=1

The exact sampling distributions of a sand f are as yet unknown.
Neither do we know whether these estimators are unbiased (P 129).
However, the known asymptotic properties of maximum likelihood
estimators allow us to find their asymptotic sampling variance. The
observed realizations of the process being independent, we have, for

n-—»o0, agymptotically
1
T dlogL’
Pl
da’

Vo=
(5.11)

From (5.3) we find, treating #{” —#{?, =7=const,

8 logL ZeT ’
e L

da?

(5.12)

=l

By virtue of (5.2) we have
B mg) — mgr) ea’."’

where T'—Fkv is the total observation period. Consequently,

pOlogl _  wen(ef—1) Sy
0o (e"—1¥ &
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and, according to (5 11),

R 1 ar__ 72
Vo= - L=
Ny(eT—1) 7= '

2

where N, =2_7 #§7 is the total initial “population’ of all the realizations
considered

This can be brought into the form

ko

1T
o sinh o a-E

(5.13) Va= e T
R AT B T O

a formula which was obfained by D. G. Kendall®).
By an analogous procedure we get asymptotically

1
. sinhg»ﬂ% :

VA3 =

(5.14) Lt
No(l—e_ﬁ:p)

5 0%

Thg sampling variance of the estimators a and /§ is thus inversely
p‘roportwnal to the total initial “population” of all the realizations con-
s1d§red‘ It also decreases rapidly with the length of the observasion
period T. Furthermore, it depends on the number of observations 'per-
ﬁormed gn each realization (which is %-1). From (5.13) and (5.14) it
is segn immediately that the variance decreases with the number &
reaching asymptotically a maximum value for k—oo when the squared’
factor becomes unity. Thus the estimators ¢ and # become most efficient

under conditions of continuous observation of each realization of the
process. ‘

) 6. ’l:he influence of intermediate observations. The estimators
a and § in the linear “birth” and “death® processes are, 50 to speak
on. the opposite pole of the estimators 4 and £ in the simple Poiasoﬁ roj
cess and the Brownian motion process, respectively. The laft;er fwo
as we know, depend only on the first and on the lagt observation. perl’orj

med on eaxﬂ‘l -reah'za.mtion. So does their efficiency. Neither their value
nor their efficiency is affected by intermediate observations.

*) D. G. Kendall, loc. cit. 1), P 250.
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In order that an estimator é he independent of the intermediate
observations the derivative of the logarithm of the likelihood funetion
must be separable into two factors

1) dlogL

: 00

. 1) (2 . 2 L) @ L) 4@ .
=g-h($f,>,.'I;§,),‘..,a"{."),»v}u-l),w}c),-.-,sl?gc");tg)71::)7~--,t},matgc):t;c)“"’igb)!9)

in such a way that the factor ¢ may depend on all or some of the observa-
tions a{",a(",...,x and corresponding moments 10,10, as well
a3 on other parameters, but does not depend on the parameter @ (or ifif
depends the equation g=0 has no admissible solution for @; for instance
the solution is, complex while © is postulated to be real), whereas the
factor h, which depends on the parameter @, depends only on the first
and the last observation performed on each realization, <. e. on D, 2
and 0,1 (r=1,2,...,n). This is obviously sufficient as well as necessary.

We assume that the equation

9 2 1) 3@ OB . —
(6'2) h(mgl)y‘r’g)y"'7mg1)5x§cl))m§c))'"7x§cm7t§):1’((l)7~-'7t%n)7t§c);t§c)y"'7t§cn)’@)“0

is uniquely solvable with regard to ©. The solution yields the estimator
©. This estimator does not depend on the intermediate observations.

The condition (6.1) implies

(6.3) logL=gH(6)+0,

where H (@) is the primitive function of k with regard to @, and g and O
do not depend on 6. A

The condition (6.3) is satisfied with regard to the parameter A in
the simple Poisson process. 16 is gatisfied in the Brownian motfion process
with regard to the parameter u but not with regard to the parameter ¢”
Tt is not satisfied with regard to the parameters o and f, respectively,
in the linear “birth process” and the linear “death process”.

The conditions for independence from intermediate observations of
the sampling variance of the estimator 6 require separate investigation.
In view of the relation )

1

#logl ’
96°

VO=—
(6.4)

which holds asymptotically for nk—-oco, we find that the sampling va-
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riance of @ does not depend on the intermediate observations, at least

agymptotically for n—oco, when

2

(6.5) e
00O

is & function of a{’,#{ and #?,10 (r=1,2,...,

necessary as well as sufficient.

Aﬁs can eagily be verified, the condition (6.5) is satisfied for the estim-
ator 4 in the simple Poisson process and for the estimator 4 in the
Brownian motion process. In these cases (6.4) is satisfied not asymp-
totically but exactly. In the Brownian motion process the sampling
variance of o2 depends on the number of intermediate observations, buf
is independent of their timing. This can also be seen directly from (3 10).

n) only. This condition is

7. Relation to least squares estimation. The maximum likelihood
estimators obtained in this paper are identical with the corresponding
least squares estimators. Using the same notation as before, we find
the following.

The estimator 4 for the simple Poisson process can be obtained by
minimizing the expression
Zn: Zk‘ (2 T2y
r=11=1 t(r) t(r) ’
where Bel)=A(t{" —17,).

T}le estimator z for the Brownian motion process can be obtained
by minimizing the expression

r=1i=

(7.1)

— ED)

7.2
(7.2) ")—ﬁ” ’

where Bzl =u(t{?—1{",).

The estimatior ¢* is then the mean squme of the residuals of the least
squares estimation, 4. e.

1 & e — a( —if0
7.3 a1 [ — p ) —42,)Y
(7.3) SPIPE o,

. The estimators a and ﬂ for the linear “birth process” and linear
death process” can be obfained by minimizing the expression

nok .{I;‘(r)

Ez{"
PP

=1 =1

(7.4)
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where Baf?=a{,6" in the “birth process’” and Bai>=a{", ¢~ in the
“death process™.

Notice should be taken of the fact that in the expression (7.1) and
(7.2) the squares of the deviation from the expected value are weighted
by the reciproeals of the length of time ¢{” —t{?, elapsing between successive
observations. In the expression (7.4), instead, the squares of the devia-
tions from the expected wvalue are weighted by the reciprocal of the
gize of the “population’ at the beginning of each successive obser-
vation period. In other words, in (7.1) and (7.2) the squares of the
deviations are taken as ‘‘per unit of time”, whereas in (7.4) they are ta-
ken as “per unit of population”.

8. Estimation of transition probabilities in simple Markov chains.
Finally, we consider the problem of estimating transition probabili-
ties in simple Markov chains with a finite number of states. We assume
the transition probabilities to be stationary.

Denote the states by the numbers 1,2,...,s and denote by py the
probability of transition from state ¢ to state j. The probabilities of tran-
gition form the transition matrix

P Prz +-- Pis
P2y Py --- Pos )

Ps1 Psa +-- DPss

(8.1)

In this matrix
0y <1 for 4,j=1,2,...,s

and

(8.2) t=1,2,...,s.

&
Y py=1 for
=1

Let NV changes of state be observed and denote by my the observed.
frequency of changes from state ¢ to stabe j. Denote further

8
(8.3) m=121 Mg,
4. 6. the total frequency of changes starting from state . Obviously
8
Sm=N.
i=1
We have the observation matrix
M1y Mg M1
(8.4) Mgy Migg Meog
Mgy Mgz +vv Mg
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The logarithm of the likelihood function of this mafrix iy, according
to the multinomial law,

s s . 8
(8.5) logL=Tog(N!) — > > (myl) ~ My 10g Py
i=14=1 =14

i
-

The estimators p; are found by putting
(8.6)

gubject to the side relations (8.2). Introducing the Lagrange multipliers
1,0,...,1, we arrive at the equations

(8.7) gy =1y

Summing over § and taking into account (8.3) as well as (8.2), we find
ly=mn, (7=1,2,...,8)

and, consequently,

; Mgy

p.' = —
Ty

(8.8) (4,§=1,2,...,8).
The estimator of the probability of transition from state ¢ to state § is
is the relative frequency of changes issuing in state § among all changes
starting from state ¢. This regult was first obtained by V. I. Romano vski®)
The expectation and the sampling variance of p; are, respectively,
N R 1
(8.9) Bpy=mpy and Vpy= + P (L—py)-
3
The estimator @ is thus unbiased and consistent.
' The obgervation matrix (8.4) being given, we can by virtue of (8.8)
estimate the transition matrix (8.1). By means of the x® criterion the
hypothesis can be tested that an observation matrix (8.4) is the result

of the realization of a simple Markov chain with some theoretical transi-
tion matrix (8.1). In this case

8 . . 2

(8.10) e N (=90 Pyy)
2 2 N Dy

the number of degrees of freedom being s*—1.

5) B. M. Pomanoncrult, Juerpemnote yenu Maproaa, Mockna-Jlewnnrpag 1949,
p- 393.

SUR LE COLORIAGE DES GRAPHS
PAR

J. MYCIELSKI (WROCLAW)

Un graph fini est un ensemble fini (situé dans lespace euclidien
4 trois dimensions) de points dont cerbaing sont joints par des ares
simples gqui n’ont pas de points communs (sauf — peut-étre — de points
finaux)'). Un graph composé de trois points joints deux-a-deux s'appelle
un triangle. ‘

Colorier un graph auw moyen de n couleurs — veutb dire — peindre
chacun de ses points par une de ces couleurs, les points joints par un
arc simple étant puints de couleurs différentes.

(Il est évident quwun graph qui contient m points joints deux-a-deux
ne peut pas étre colorié par moins que m couleurs. Je me propose de dé-
montrer dans cetbe note quwun théoréme inverse serait faux. En effet
je vais prouver le théoréme suivant:

THEEOREME. Pour chaque nombre naturel m il ewiste wn graph ﬂm
ne contenant aucun triangle, qui ne peut pas dire colorié au moyen de n cou-
Tewrs. .
Démonstration. Powr n=1, deux poinfs joints par un arc simple
sont un exemple d'un tel graph. .

Dégignons par di,...,a, les points d’un graph A ne contenant pas
de triangle, qui ne peut pas &tre colorié par n couleurs. Nous allons con-
struire un graph A* qui ne contient pas de triangle et qui ne peut pas
dtre colorié par n-+1 couleurs.

DESIgNONS PAT Gy, ..., 0, 1o suite de tous les points du graph A
qui sont joints auw point 4.

Ohoisissons dans Uespace un ensemble de m--1 points: Gy iyye s ey Omy
qui est disjoint avee le graph A.

Joignons par des aros simples chacun des POINGS Gy, -y Og, B0 POING
, (pour i=1,...,m). Joignons encore chacun des points T
point aq. !

1) 11 est dvident gu'un graph fini consbitue un moddle d'une relation symétri-
que ot antiréflexive définic dans un ensemble fini. Ainsi cet article pourrait étre
éerit en termes d’algdbre de relations, comme p. €x le travail de K. Zarankiewiez,
Qur les relations symétriques dons Vensemble fini, Colloquinm Mathematicum 1 (1947),
p. 10-14.
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