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Then putting h,=1-g,, we obtain (3). Consequently, denoting by J the
set of all sequences {j,} consisting of 0 and 1 and such that j,=h, for
sufficiently large », we have
ul Y EPER. )=p(imBl)=
Gnyed wT

Now, let us denote by J* the set of all {in) ed such that u(BLBE...) > 0.
Since the set J is denumerable, the preceding equality implies the follow-
ing one:

ra 2 BRER..
{in¥ed*

It follows from the hypotheses, that every set belonging to M is the
sum of a family of disjoint sets of the form ER2E2..., whence every set
BRER... with {j,)eJ* is an atom of p. Therefore, in view of the prece-
ding formula, x is purely atomie.

Combining (i) and (ii) we obtain

THLEOI.EEM IV. There is a purely atomic measure y and a Sequonce
of stochustically independent sets {E,L} with w(B,)=p,, if end only if

J=1.

o0

(9 ' 2 (Pa)a<<209).

n=1

The nécessity of this condition follows directly from (i). To prove

the sufficiency, it suffices to consider the Lebesgue measure in the
unit interval, to apply 1(iv) and to define M as the o-field spanned by

{B,). It follows from (i) that the Lebesgue measure, considered on M -

only, is purely- atomie.

°) This construction of a sequence of sets independent with respect to a purely
atomic measure was found also by S. Zubrzycki.
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ON THE AXIOMATIC TREATMENT OF PROBABILITY
BY
J. LOS (TORUYN)

The calenlus of probability is a branch of mathematics whose founda-
tions have so far not been fully investigated. There are of course, many
such branches, but the caleulus of probability is unique among them as
regards the speeific course of the development of its fundamental prin-
ciples. This is bound with what prof. Steinhaus calls the “tavern”
origin of the calculus of probability. A theory of gambling games at first,
it gradually extended its range of applicability, becoming finally a mathe-
matical theory of great practical and theoretical importance.

It was at a very early stage of the development of the calenlus of
probability that mathematicians felt the need of formulating ity founda-
tions more precisely. The first attempt in this direction was probably the
definiton of “classical probability” given by Laplace. However it was the
introduction of axiomatic methods, which made it posmble to investigate
the principles of probability along new lines.

The first axiomatic of probability was given by Bohlmann [2]
about the year 1904. Since that time there have appeared (and still appear)
numerous axiomatics, suggesting new methods of treatment or — more
frequently — distorting treatments already known by means of the
terminology which they adopt.

In principle it is the aim of every axiomatic of the calculus of proba~
bility to answer the following two questions: :

1° What are events, 4. ¢. what are those objects supposed to be
probable?

2° What kind of function of events should probability be?

Rather a paradoxical point of view could be ventured, namely, that
the answers to the above-mentioned questions should not be given by
probabilists. The first should be answered by algebraists and the other by
real function specialists.

And even if it were mot true, experience shows that certain parts
of algebra (lattice theory, and especially the theory of Boolean algebras)
and certain parts of the theory of functions (measure theory) comtrol
the foundations of probability to such an extent that they almost ab-
sorb them. This is a useful process of complete mathematization of the
calenlus of probability.
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The aim of this paper is to show, from the mathematical point of
view, the present state of research regarding the axiomatic treatment
of the caleulus of probability.

It does not pretend to be complete. I omit all historical and philo-
sophical problems connected with the subject, as well as many other
problems based on strictly mathematical foundations of the caleulus of
probability and not directly connected with ifs axiomatic nor do I in-
troduce any original suggestions; I simply try to compose various new
results, particularly those obtained by Polish mathematicians.

T take into consideration the achievements directly connected with
the axiomatic treatment of the calculus of probability and those which
apparently are not connected with the axiomatic treatment but really
influence it to a great extent.

§ 1. What should an axiomatic of the calculus of probability
be like ? From the unit circle (or from the interval [0,1]) I choose a poing
at random. What is the probability of this point belonging to a given
seb ?

Such a problem. leads at once to the consideration of Lebesgue’s
meagure on the circumference of a circle (or in the interval [0,1]), and to
the consideration of a field of measurable sets. Thus we have:

(a) a certain set E (circumference of a circle, interval [0,1]),
(b) a certain field of sets K (measurable sets),
(c) a ceratin measure px on K (Lebesgue’s measure).

The occurence of the triplet (&,K,u)> is observed in nearly all
problems of the caleulus of probability and none of its elements is super-
fluous.

(2,) The set B, called the set of elementary events, is necessary to
define the random variable as a real function on B measurable with respect
to the field K.

(by) The field K, called the field of events, is the set of those objects
which are supposed to be probable. In this field the set-theoretical ope-
rations correspond to the classical operations on events.

(ep) The measure g on K is the probability attributed to the events
of K.

There are cerfainly many such triplets <(E,IK,u)> to which the
probabilistic reasonings may refer. The aim of the axioms of probability
is to select that class of them which is essential for probabilistic problems,
i. e. triplets (we shall call them spaces of probability) with which the calcu-
Ius of probability is and must be concerned if its applicability and re-
sults are not to be limifed.
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While selecting the spaces of probability from among the triplets
(B,K,u> we must proceed as follows:

(1.1) Every such triplet that appears in the problems of the caleulus of pro-
bability must be a space of probability (otherwise we shall limit the
applicability of the calewlus of probability).

(1.2) The fundamental notions of the caloulus of probability should be defi-
nable for every space of probability (random variable, stochastical in-
dependence, mathematical cxpectation) and the fundamental theorems
of the caleulus of probability should be provable, for instance the laws
of large numbers; otherwise we shall impoverish not only the theory
but also its applicability.

The above two conditions are of course not formulated exactly and
may be interpreted in various ways. It seems that one condition which
is a specification of the condition (1.1) might quite precisely be put as
a condition for the spaces of probability. It runs as follows: )

To the spaces of probability must belong the tripel consisting of the
interval [0,1] (or the unit cirele), of the field of measurable sets and of
Lebesgue’s measure on them.

Foundations of probability which exclude this case are only fragmen-
tary and not interesting from the mathematical point of view.

§ 2. Kolmogoroff’s first interpretation — its merits and defects.
In the year 1933 A.N. Kolmogoroff published his work Grundbegriffe
der Walrscheinlichkeitsrechnung [107], in which he gave not only an axiom-
atic of the caleulus of probability but also showed how it satisfies the
postulates (1.1) and (1.2).

‘There is no need to emphasize here the decisive meaning of that work
since in order to avoid redundancy we already adopted Kolmogoroff’s
standpoint in §1.

However to all who know older textbooks and papers which deal
whith the calculus of probability and know in what mistery different
probabilistic notions were kept, it is clear that Kolmogoroff’s work has

indeed given mathematical foundations to this branch of knowledge.

This has been achieved by an exact formulation of agsumptions, a precise
definition of notions and by establishment of close connection of the
calculus of probability with other. mathematical theories, namely the
theory of measure and the theory of integral which were already fully
developed in those days.

Kolmogoroff’s axiomatic, according to the present terminology,
demands that probability should be a normed measure (4. ¢. @ non-ne-
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gative and additive function) on a field K of subsets of B satisfying the
axiom of continuity:

. oo
Hm u(X,)=0 for X,DX,D ... with ann:07
N—00 n2
equivalent to the condition of denumerable additivity.

The axiom of continuity admits a unique extension of the measure
& 50 a denumerably additive measure on the smallest denumembly ad-
ditive field of sets which contains the field K.

Therefore we can always assume that K is already a denumérabl:
additive field (e-field) and that x is o denumerably additive measure o1
K (o-measure).

There is no need to discuss in detail how different probabilistic no-
tions are defined on the ground of Kolmogoroff's axiomatic. It suffices
to note that every real function f on E measurable with respect to the
field K (hence such that f'(4)eK where 4 is an arbitrary interval) is
the random wvariable and the integral of f on F with respect to the mea-
sure y is the expected value of the variable . From the intuitive point
of view the essence of Kolmogoroff’s axiomatic is that only one kind
of events are examined, namely those events which can he discribed as

a random point which belong to a subset X of E.

‘It appears that such an infterpretation is always péssible and offen
even necessary if we want to formulate certain problems (e. g. the existence
of some stochastical processes).

On the other hand Kolmogoroff’s axiomatic may be oriticised. The
author has done this himseif [117].

© The first objection concerns the representation of every event in
the form zeX, which may be considered as an impoverishment of the
formalism of the calculus of probability, or at least of its intuitive side
and as deviation from its tradition. The second objection points out that
his axiomatic. does not-admit the identification of almost identical events
(i. e. such that their symmetrical difference is of measure 0), or which
in fact is exactly the same, that, in most of the considered cases, it does
" mnot allow to introduce a strictly posifive meagure (i. e. a measure which
is equal to 0 only on the empty set) These difficulties induced Kolmo-
goroff to suggest a somewhat different attitude towards the foundation
of the caleulus of probability; we shall discuss them in §5

§ 3. Boolean algebras and fields of sets. In general considera-
tions upon the caleulus of probability (i. ¢. those which do not refer to
any special applications), with cerfain objects, which we call “events”,
we associate a certain number, which we call “probability”,
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It is essential that the nature of the events is, in this case, indifferent
for o mathematician; it is necessary to furmish the set of events with
the operations of addition, multiplication and complementation, gover-
ned by special laws.

From the formal point of view these laws are the same as those which,
govern the operations of addition, multiplication and complementation
in the algebra of sets The above is not equivalent to regarding events
a8 sefs.

By a Boolean algebra we understand a class of objects furnished
with operations governed by the same laws as the operations on sets.

- The nofion of Boolean algebra is of essential importance for the
foundations of probab.lity. A set of events is a Boolean algebra, From the
very definition of Boolean algebras in follows that the fields of sets are
their particular case. M. H. Stone [22] has proved that also inversely:
every Boclean algebra is isomorphic with a field of sets.

It is of great importance for the axiomatic treatment of the calculus
of probability, as we shall see, that Stone’s construction ol a field of sets
K isomorphic with a given Boolean algebra B has a clear probabilistic
meaning and, moreover, it possesses certain properties which may be
used in discussing the foundations of probability. This field is the field
of both closed and open sets of some hicompact and totally disconnected
topological space (the so-called Boolean space). The points of this space
are the prime ideals of the algebra B (in this paper by idesls we under-
stand the multiplicative ideals: d-ideals, and not the additive ideals:
s-ideals).

Algebraically a prime ideal is defined as such a set of events ICB
that fulfils the following three eonditions:

(3.1) Xel, YeI implies X-Yel,

(3.2) XelI, YeB implies X +Yel,

3.3) froin two complementary evenis X and X’ one and only one belongs to I.
Y g

Suppose we carry out some trials on the occurence of a certain phys-
ieal phenomenon; each trial gives a set of events which have occured
in that case.

It is never one event, because from occurence of an event X certainly
follows the oceurence of the event X 4+ ¥ (Y is an arbitrary event) generally
different from X. Therefore we see that this set fulfils the condition (3.2)
of prime ideals. We can also verify that the remaining condi‘ions are sa-
tistied. We must only remember that the event X+ T ocecurs if and only
if at least one event X, ¥ occurs; XY oceurs if and only if both X and ¥

Colloguinm Mathematicum TIT. 2 9
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occur, and finally the event X’ occurs if and only if the event X does
not oceur.

From the above it follows that the set of the events which occur in
some trial is & prime ideal. This allows the prime ideals to be considered
as elementary events.

The isomorphism, constructed by Stone, which maps the algebra
of events B on & field of sets K situated in the space 8 of all prime ideals
has also a clear probabilistic meaning.

This mapping makes the event XeB correspond to the set ¢(X),
which consists of all those prime ideals I to which X belongs. If we con-
gider a prime ideal as a result of a trial, which is a substitute of an elemen-
tary event, then ¢(X) is the set of all those trials in which X occurs. The
mapping thus defined proves to be an isomorphism; the field K of all
gets p(X) is isomorphic with B, and if we accept the sets from K as neigh-
-bourhoods in §, then § becomes a bicompact and Sotally disconnected
topological space.

By Boolean o-algebra we understand an algebra which, besides
the operations discussed is furnished with the operation of denumerable
addition and multiplication, . ¢. the addition and multiplication is perfor-
mable not only on two events but also on each denumerable sequence of
events.

Similarly to the finite operations, also the infinite operations are
governed by the same laws as the infinite operations on sets. Such
a g-algebra need not be isomorphic with a o-field of sefs.

However, Loomis and Sikorski [12,19] have shown that each
Boolean o-algebra is isomorphic with a gquotient o-field, 4. 6. a o-field
divided by a o-ideal.

Here we shall shortly explain the operation of dividing an algebra
by an ideal, in particular of a s-algebra by a o-ideal.

A subset I of a given algebra B is called an deal if it satisfies the
conditions (3.1) and (3.2) (if it also satisfies the condition (3.3) it is called
a prime i{deal). For instance the set of events of probability 1 is an ideal.
In this interpretation the construction of quotient algebra can obtain
2 probabilistic intuition.

Let I be an ideal of the algebra of events B; fhe elements of I will
be called certain events. In the quotient algebra B/I two events
X,YeB whose simultaneous occurrence or non-occurrence is of certain
1 (4. . the event X Y belongs to I) are treated as identical.

An ideal I is a o-ideal (Qenumerably multiplicative ideal) if it satisfies
additionally the following conditions:

(3.4) If the events X,,X,;,X,,... belong to I then the product HX also
belongs to I.
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It Iis a o-ideal of a c-algebra B, then the quotient algebra B 1 is
also a o-algebra.

§ 4. Probability in Boolean algebras. In order to avoid the diffic-
ulties discussed at the end of § 2 it will be convenient to omit the assumyp-
tion that events supposed to be probable are sets and to assume only
that they form a Boolean algebra. Such an attitude towards probability
has been suggested by Glivenko [6] and Halmos [8]. Then probab-
ility is & normed meagure on elements of a certain Boolean algebra, which
may be arbitrary. In fact it is a kind of generalization of regarding events
a8 sefs; it is also a return to the classical traditions, accordmg to which
events need not be sets.

Let us note, however, that such an attitude deprives the fields of
probability of one element, namely of the set E.

In a field of probability we shall now have only B and 4. ¢. a Boo-
lean algebra (analogous to a field of sets) and a measure, in place of the
triplet (Z,K,u». This impoverishment ‘causes difficulties in defining
many probabilistic notions and in the first place in defining the random
variable and its expected value.

Attempts have been made to eliminate this difficulty [1,3,18],
but, in fact, they all reduce the notion of the random variable to the
notion of a ¢-homomorphism of a field of Borel sets of the real axis in
a Boolean o-algebra.

Such unification of these different attempts was first proposed by
E. Marczewski and subsequently developed by Sikorski [20,21]
and Gotz [7].

Let B be a field of Borel sets situated on the real axis. The mapping
B of B into a Boolean algebra B is called a homomorphism if, for A;,4,¢B

(A1+A2 —h( +h Az)a
h{dy-A4,) =h{41)-h{4,),
h(Ao —h(dy)". ,
Moreover, if B is a c-algebra and
h(34) = S hid)

for any 4,,4,,...¢ B, then h is called a o-homomorphism (a denumerably
additive homomorphism).

In order to show how the homomorphism of one field of Borel sets
into a field of events may, for probabilistic purposes, replace the random
variable, we ghall consider a real function f on the set E measurable with
respect to a certain o-field K of the subset of K.

9%
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If K is regarded as a field of events, f is regarded as the random
variable (§ 1).

Tor an arbitrary Borel set 4 on the real axis let us put

h(A)=mEF[f(m)eA]=f'l(A)-
Funetion % is a o-homomorphism of the field B of Borel sets into IL. This
homomorphism is strictly connected with the distribution function of f. If 4
is the interval [—oo,a] and a o-measure g is given on K, theu putting
_D,(a):y(h(A)) we obtain the distribution function of f with respect to
the measure g.

In order to define Lebesgue’s integral of the function f with respect
t0 the measure p, it is not necessary to know the function f itself, it sufti-
ces to know its distribution funetion or the homomorphism A. This allows
us to replace the notion of a measurable function by the notion of homo-
morphism in the foundations of probability constructed on Boolean
algebras provided the algebra in question is a o-algebra. In homomor-
phisms we obtain thus a substitute of the random variable. If we have
2 homomorphism % of the field B into a ¢-algebra B furnished with a o-
-measure p, then taking as example the definition of Lebesgue’s integral,
we can easily define the integral of the homomorphism &, which acts as
the expected value and has all the properties generally demanded of the
expected value.

5. Making use of the connections of Boolean fields with fields
of sets, Kolmogoroff’s second interpretation. The attitude deseri-
Ded in the former paragraph is possible, but the same results may be ob-
tained by making use of the connections between Boolean algebras and
fields of sets.

‘We ghall begin here with the description given by Kolmogoroff[il].
He remarked, above all, that it iz easier to apply probability on Boolean
algebras as it allows us to assume that probability is a strictly positive
measure.

‘We obtain such a measure by identifying events with respect to the
ideal of eventis of the probability 1.

He then remarked that in the case of Boolean algebras we need
not assume the denumerable additivity of measure or the denumerable
additivity of the algebra because for every Boolean algebra B, with a stric-
tly positive measure u, there exigts a unique (with an exactitude 6o the
isomorphism) ¢-algebra B with a strictly positive o-measure such that

B is an extension of B;

18 an extension of py;

B itself is the least o-subalgebra of B which contains By.

icm

COMMUNICATTIONS 133

For a given algebra B, with 3 strictly positive measure yg, the
algebra B and the measure y are constructed as follows:

As can be seen from Stone’s construction, the algebra B, is isomorphic
with a field of both closed and open sets K of a certain bicompact space
§. By means of this isomorphism the measure u, may be transferred to K.
The measure u, in K satisfies the condition of continuity (see §2), which
follows easily from the bicompactness of the space 8, and therefore it
may be extended 0 a o-measure on the least o-field K; which includes
the field K. The measure in K, need not be strictly positive, whereas
dividing K, by the jdeal of sets of the measure 1 we obtain a c-algebra
B and a o-measure, thus satisfying the required conditions®). This not
only allows us to omit the condition of denumerable additivity bub also-
gives a convenient foundation for defining the random variables as fune-
tions on the space §, the elements of which, as we know, are the prime
ideals in B,, and therefore treating them as elements is intuitively justi-
fied. )

§ 6. Detailed examination of homomorphisms, The detailed exam-
ination of the connection between homomorphisms and point functions
has been undertaken by Sikorski. The results he obtained seem to indi-
cate that though probability may easily be examined on Boolean algebras,
such treatment gives no generalizations. Any probabilistic examinations
in algebras may be reduced to examinations in fields of sets.

Let B be a certain Boolean c¢-algebra and u a certain c-measure
in B. .

As we know, the algebra B is isomorphic with a certain field K of
subsets of a fixed set H, divided by a o-ideal I. Therefore B is isomor-
phic with K/I. The elements of K /I we shall denote by [X7]; it is the elass
of all those sefs ¥'¢K which have been identified with XeK.

Let f be a real function on F, measurable K; putting for an arbitrary
Borel set A

(6.1) h(4) =g([f7"(4)])

where ¢ is an isomorphism mapping K/I onto B, we obtain a homomor-
phism of the field of Borel sets B in the algebra B.

The homomorphism which satisfies the connection (6.1) for a cer-
tain function f is called induced by f.

The consideration of induced homomorphisms can certainly be
rednced to the consideration of inducing functions. If there existed homo-
morphisms not induced by functions, then considering them as if they

1) This construction differs from that of Kolmogor off.
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.x;riiire random variables would effectively enrich the ealculus of probab-
ility.

That however is not the case. Sikorski [20] has proved that every
homomorphism of the field of Borel sefs in a Boolean o-algebra is induced
by a certain function.

The expected value of homomorphisms can just as easily be reduced
to the expected value (integral) of a point function. Namely, it should
be noted that we can transfer the measure u of B to the field K ta-
king it through isomorphism to the algebra K/I, and then defining it
on every set XeK as equal to u([X]). According to the measure thus
obtained the sets belonging to I will be of the measure 1 (and if 4 Was
a strietly positive measure in B, then only these sets).

Now if f, and f, induce the same homomorphism &, then it is Casy
to see that

xﬂ[ﬁ@):f‘z(m)]

belongs to I, and therefore it is a set of the measure 1.

. Thus it appears that functions which induce the same homomor-
phism are equivalent with respect to the measure in K, and therefore parti-
cularly have the same integral with respect to this meagure. Therefore
?mowi;ug the homomorphism % we can define its expected value as an’
integral of an arbitrary funection which induces this homomorphism.

Thus we shall obtain the same expected value-of the homomorphism
a8 that obtained through defining it directly, without the use of an
inducing function (Sikorski [21]).

. § 7. The algebra of sentences and their application in the axiom-
atic treatment of probability. Tarski and Mostowski [23, 24, 17]
have examined the conmections between logic and Boolean algebr;,s.

An algebra of sentences of a certain deductive theory forms a Boo-
lean 'fmlgebra if as the operations of addition, multiplication and complem-
entatn?n we take alternative, conjunection and negation, and further-
more if we identify two equivalent sentences. These connections’ allows
us to perform the calculus of probability on sentences. which correpond
to events.

. These connections were of course known formerly, but not in a pre-
cise form. Keynes [9] was the first who purposely used sentences ag
elements with which probability is associated. Xt is also his merit that as
early as 19?1 he discovered and explained for probabilistic purposes

. thqugh not in a very exact way, a large part of the calculus of systems,
which was afterwards developed by Tarski. ,
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In Poland the calculus of probability on sentences was developed
by Bukasiewicz [13] and Mazurkiewicz [15, 16].

Mazurkiewicz gave a most original axiomatic of the calculus of prob-
ability in which probability iz a function not directly on sentences but
on systems (i. e. on certain special sets of sentences). Systems, however,
do not form a Boolean algebra but a more general algebraical structure —
the so-called Browwerian algebra. This is, I believe, the only attempt
to develop the caleulus of probability not in Boolean algebras. It was,
however, given up by the author himself and not continued by others.

Practising the caleulus of probability on sentences is a kind of spe-
cification of that method by which it is carried out on Boolean algebras.

Tt consists in admitting only some special algebras. This has its good

and bad points. From the intuitive point of view such procedure may be
justified by the fact that the events considered in the ealculus of probab-
ility are always described by means of cerfain sentences, the caleulus
in an algebra of events being the same as on the corresponding sentences
in an algebra of sentences. Therefore one can identify events with sen-
tences which describe them (or with the conjuction of those sentences).

In this way one obtains a convenient equivalent of events. The no-
tion of ideal which, as we have seen, was of great importance as regards
events, has also a very natural interpretation in the algebra of sentences.
Tdeals in the algebra of sentences are systems; prime ideals are complete
systems [23].

The disadvantages of practising the caleulus of probability on sen-
tences, which discourage mathematicians from proceeding in this direc-
tion, are as follows:

1° Fields of sentences are always denumerable what implies that
a Boolean algebra composed of sentences is at most depumerable. This
renders it imposgible to conduct the probabilistic investigation with
regard o problems which require & non-denumerable field of events;
in particular such a theory makes it impossible to reconstruct Lebesgue’s
measure on an interval (see §1).

2° An algebra formed of sentences cannot be a o-algebra, for it is
easy to show that no denumerable Boolean algebra (4. ¢. of the power
N, exactly) is a o-algebra. -

3" The fact that events are sentences has never been properly usi-
lized in the theory of probability built on sentences (with the exception
of philosophical speculations of doubtful value).

The mathematical part of all the theories presented till now may

be reconstructed without the assumption that elements supposed to be
‘probable are sentences, if only we assume that they form a Boolean algebra.
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Let us observe that when Kolmogoroff assumes that events are sets,
he makes real use of it while defining the random variable. Similarly,
in more specific questions of geometrical probability, if we assume thas
events are, for instance, sets on a plane, then we do so in order to make
use of their geometrical properfies. None of these assumptions would,
be appropriate if it were not used in an essential way.

The first two objections may be at least partially removed by apply-
ing to a Boolean algebra constructions given in the preceding paragraphs
(which takes us beyond the algebra of sentences and, as far as I know,
has not been worked out in detail by anybody); the last objection seems
to be essential.

It is true that so far probabilistic logicians have not made sutficient
use of the specific properties of their events. The latest work published
by Carnap [B] may serve as example although it must be granted thab
in his previous work [4] he tried to use the special properties of sentences
with regard to probabilistics.

Unfortunately the foundations of probability econstructed by Car-
nap in [4] have so many drawbacks and are so fragmentary in their mathe-
matical part (see for instance [14]) that they are of little value for
mathematicians.

T suppose that it is not impossible to construct foundations of pro-
bability, based on senbtences to which objection 3° would not apply. One
could even make use of certain ideas of Carnap concerning the invaria-
tions of probability with regard to permutations of signs ([4], p. 108).
Omne could even expect certain connections with the theory of geometric-
al probability, in which appear invariations of probability with regard
to the transformation group of a given geometry. .

Even a superficial ontline of such conceptions would lead far beyond
the scope of this paper.
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