

- C O M M U N 1 C A T I O N S
- [5] J. M. H. Olmsted, Lebesgue theory on a Boolean algebra, Transactions of the American Mathematical Society 51 (1942), p. 164-193.
- [6] J. Ridder, Zur Mass- und Integrationtheorie in Strukturen, Indigationes Mathematicae 8 (1946), p. 64-81.
- [7] S. Saks, Theory of the integral, Monografic Matematyczne, Warszawa— Lwów 1937.
- [8] R. Sikorski, On the representation of Boolean algebras as fields of sets, Fundamenta Mathematicae 35 (1948), p. 247-258.
- [9] R. Sikorski, On the inducing of homomorphisms by mappings, Fundamenta Mathematicae 36 (1949), p. 7-22.

ON AN UNSOLVED PROBLEM FROM THE THEORY OF BOOLEAN ALGEBRAS

BY

R. SIKORSKI (WARSAW)

Let X and I be respectively a σ -field 1) and a σ -ideal of subsets of a set \mathcal{L} It is well known that the quotient algebra X/I is σ -complete. In some cases X/I is further a complete 2) Boolean algebra. The latter is true, for instance, in two following cases, where:

(a) X is a σ -field on which an enumerably additive finite measure μ is defined, and I is the σ -ideal of all sets of measure zero ³):

(b) X is the σ -field of all subsets of a topological space 4) \mathcal{X} which possess the property of Baire 5) (or: X is the σ -field of all Borel subsets 6) of \mathcal{X} , and I is the σ -ideal of all subsets of the first category in \mathcal{X} .

Another kind of σ -field which is often considered beside the fields of measurable or Borel sets is the field $S(\mathcal{X})$ of all subsets of an abstract set \mathcal{X} . If I is a principal ideal, i. e. if I is formed of all subsets of a set $X \subset \mathcal{X}$, then obviously $S(\mathcal{X})/I = S(\mathcal{X} - X)$ is complete.

¹⁾ Terminology and notation are in this paper the same as in my paper The integral in a Boolean algebra, this fascicle, p. 20-21.

²) A Boolean algebra A is called *complete*, if for every class $A_0 \subset A$ there exists the least element containing all elements $A \in A_0$.

³⁾ More generally: let I be a o-ideal of a o-field X; if every class of disjont sets X & X - I is enumerable, X/I is complete.

⁴⁾ A space is called topological, if it fulfils the four well-known axioms of Kuratowski. See e. g. P. Alexandroff und H. Hopf, Topologie, Berlin, 1935, p. 37.

b) A subset X of a topological space possesses the property of Baire if it can be represented in the form X = G + P - R, where G is open, and P and R are of the first category. See C. Kuratowski, Topologie I, Monografie Matematyczne, Warszawa-Lwów 1933, p. 49.

a) If X_1 is the field of all subsets with the property of Baire, X_2 is the field of Borel sets, and I is the ideal of sets of the first category, then the algebras X_1/I and X_2/I are isomorphic.

The question arises whether principal ideals are the only σ -ideals I of $S(\mathcal{X})$, such that $S(\mathcal{X})/I$ is a complete Boolean algebra. On account of (a) the answer is negative, if there exists an enumerably additive finite measure μ defined for all subsets of \mathcal{X} and vanishing for all one-point sets $(\mu(\mathcal{X})>0)$. Banach and Ulam have proved \mathcal{X} is less than the first aleph inaccessible in the weak sense \mathcal{X}). The hypothesis that \mathcal{X} 0 is less than the first aleph inaccessible in the weak sense implies that such a measure μ does not exist also if the potency of \mathcal{X} 1 is less than the first aleph inaccessible in the strict sense \mathcal{X} 1. Thus the problem may be formulated in the following way:

P61. \mathcal{A} is a set of potency less than the first aleph inaccessible in the meak (strict) sense. Are principal ideals the only σ -ideals I of $S(\mathcal{X})$ such that $S(\mathcal{X})/I$ is complete? ¹⁰).

On account of (a) the positive answer to this problem would imply the above mentioned theorems of Banach and Ulam on the non-existence of non-trivial measures on $S(x^2)$; by (b) this answer would imply also that, if a topological space x^2 (of potency less than the first inaccesible aleph) dense in itself is not of the first category in itself, it contains a subset which does not possess the property of Baire.

I shall prove the following theorem:

Let I be an ideal (of subsets of a set $\exists i$) containing all one-point sets, and let $\mathfrak{m}(I)$ be the least cardinal \mathfrak{m} with the property: there exists a class $X_0 \subset S(\exists i)$ of potency \mathfrak{m} , such that

I is formed of all subsets of sets belonging to X_0 . Then, if there exists a class X_1 of potency $\mathfrak{M}(I)$ of disjoint sets which do not belong to I, the Boolean algebra $S(\mathbb{R}^2)/I$ is not complete 11).

In order to prove this theorem it is sufficient to show that if $X - X_1 \epsilon I$ for every $X \epsilon X_1$, then there exists a set $X_2 \subset X_1$ such that $X - X_2 \epsilon I$ for every $X \epsilon X_1$, and $X_1 - X_2 \operatorname{non} \epsilon I$.

Let φ be a one-one mapping of the class X_1 in the class X_0 . Since $\varphi(X) \in I$ and $X - X_1 \operatorname{non} \in I$ for every $X \in X_1$, we have $X - X_1 - \varphi(X) \neq 0$. Let x(X) be an element of the set $X - X_1 - \varphi(X)$, let X_0 denote the set of all elements x(X), where $X \in X_1$, and let $X_2 = X_1 - X_0$. Since $x(X) \operatorname{non} \in \varphi(X)$, the set X_0 is not a subset of a set belonging to X_0 ; hence $X_0 \operatorname{non} \in I$. Since $x(X) \in I$, we have $X - X_0 = X - X_1 + x(X) \in I$ for every $X \in X_1$, q. e. d.

On the other hand, there exist σ -ideals I, such that $\mathfrak{m}(I) > \widehat{Z}$; such ideals do not fulfil the assumptions of the theorem just proved. For instance, let \widehat{X} be a set of potency 2^{\aleph_0} and let X^0 be a class of enumerably independent sets 1^2) with $\overline{X}_0 = 2^{2^{\aleph_0}}$. The class I of all subsets of all enumerable sums of sets $X \in X^0$ is an σ -ideal, such that $\mathfrak{m}(I) = 2^{2^{\aleph_0}} > 2^{\aleph_0}$.

⁷⁾ S. Banach. Über additive Massfunktionen in abstrakten Mengen. Fundamenta Mathematicae 15 (1930), p. 97-101; S. Ulam. Zur Masstheorie in der allgemeinen Mengenlehre, Fundamenta Mathematicae 16 (1930), p. 140-150.

⁸⁾ $p = \aleph_2 > \aleph_0$ is called *inaccesible in the meak sense*, if λ is a limit number and if the condition $p_t < p$, where t runs over a set T of potency less than p, implies $\sum_{t \in T} p_t < p$.

[&]quot;) A cardinal $p > \aleph_0$ is called inaccessible in the strict sense, if it is inaccessible in the weak sense and if, moreover, $\mathfrak{m}^n < \mathfrak{p}$ for every $\mathfrak{m} < \mathfrak{p}$ and $\mathfrak{n} < \mathfrak{p}$. See A. Tarski, Über unerreichbare Kardinalzahlen, Fundamenta Mathematicae 30 (1938), p. 69.

¹⁰) This problem is unsolved also in the case where the space is of potency \mathbf{x}_1 or $2\mathbf{x}_1$.

¹¹⁾ Let R denote the set of all real numbers, and let M and N denote respectively: the σ -ideal of all sets $X \subset R$ of measure zero, and the σ -ideal of all sets $X \subset R$ of the first category. By the theorem above the Boolean algebra S(R)/M is not complete. Similarly, the hypothesis $2^{R0} = R$, implies that the Boolean algebra S(R)/N is not complete. See W. Sierpiński, Hypothèse du continu, Monografie Matematyczne, Warszawa-Lwów, 1934, p. 109-110.

¹²) See E. Marczewski, Ensembles indépendants et leurs applications à la théorie de la mesure, Fundamenta Mathematicae 35 (1948), p. 21-22.