RY

J. ALBRYCHT (POZNAŃ)

Let X be a Banach space; a vector-valued function x(t), i.e., a function from a closed interval I = [a,b] to X, will be said to be *meakly continuous* at t_0 if, $\xi(x)$ being any linear functional over X, we have $\xi(x(t)) \to \xi(x(t_0))$ as $t \to t_0$. This function will be said to be *meakly differentiable* at t_0 to x_0 if

$$\lim_{h\to 0} \xi\left(\frac{x(t_0+h)-x(t_0)}{h}-x_0\right)=0,$$

 $\xi(x)$ having the same meaning as above. The element x_0 will be written $x'_w(t_0)$.

In the sequel we shall denote by x(t), y(t), the functions from I to X, by $\gamma(t)$ the real-valued functions. Conv y(t) will denote the convex span of the set of the values of the function y(t) as t ranges in the open interval (a,b); Cl E will denote the closure of the set E.

In this Note L'Hôpital's rule is generalized for couples of functions the first of which is a vector-valued function and the second is real-valued. As in the case of real functions we shall base our theorem on Cauchy's Mean Value Theorem:

Let the function x(t) be meakly differentiable in (a,b) and meakly continuous in [a,b] and let $\gamma(t)$ be differentiable in (a,b), continuous in [a,b]. If $\gamma'(t)\neq 0$ in (a,b), then

$$\frac{x(b) - x(a)}{\gamma(b) - \gamma(a)} \in \text{Cl } \operatorname{Conv}_{a < t < b} \frac{x'_{w}(t)}{\gamma'(t)}.$$

To prove this suppose the contrary; then the element

$$x_0 = \frac{x(b) - x(a)}{\gamma(b) - \gamma(a)}$$

has a positive distance from the convex closed set

$$X_1 = \operatorname{Cl} \operatorname{Conv}_{a < t < b} \frac{x'_{w}(t)}{\gamma'(t)}.$$

Hence by a theorem of Eidelheit 1) there exists a hyperplane which separates the element x_0 from the set X_1 . The equation of this hyperplane being $\xi(x) = c$, we have $\xi(x) \leqslant c$ for $x \in X_1$ and $\xi(x_0) > c$, where $\xi(x)$ is a linear functional over X. This is, however, impossible since by Cauchy's Mean Value Theorem on the reals there exists a $\tau \in (a,b)$ such that $\xi(x_0) = \eta'(\tau)/\gamma'(\tau)$, where $\eta(t) = \xi(x(t))$.

Theorem. Let the function x(t) be meakly differentiable in (a,b) and meakly continuous at b, and let $\gamma(t)$ be differentiable in (a,b) and continuous at b. Suppose moreover that x(b)=0, $\gamma(b)=0$.

and that $\lim_{t\to b} \frac{x'_{\mathbf{w}}(t)}{\gamma'(t)}$ exists. Then $\lim_{t\to b} \frac{x(t)}{\gamma(t)}$ exists and

$$\lim_{t \to b} \frac{x(t)}{\gamma(t)} = \lim_{t \to b} \frac{x'_{w}(t)}{\gamma'(t)}$$

(all limits in this theorem are meant strong).

Proof. By hypothesis we have $\gamma'(t) \neq 0$ for t sufficiently near b. Let $t_n \to b$ and $a < t_n < b$ (n = 1, 2, ...). Then

$$\frac{x(t_n)}{\gamma(t_n)} \in \operatorname{Cl} \operatorname{Conv}_{t_n < t < b} \frac{x'_{\mathbf{w}}(t)}{\gamma'(t)} = X_n.$$

The diameter of the set Z_n of values of the function $y(t) = \frac{x_n'(t)}{\gamma'(t)}$ in the interval $t_n < t < b$ tends by hypothesis to 0 as $n \to \infty$. Theorem results then

 1^{0} from the fact that the diameter of Z_{n} is equal to the diameter of X_{n} , and

 2° from $X_n \supset X_{n+1}$.

¹⁾ M. Eidelheit, Zur Theorie der konvexen Mengen in linearen normierten Räumen, Studia Mathematica 6 (1936), p. 104-111.