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W. Hurewicz proved in 1927 the well known theorem on mappings
which lower dimension. Originally, this theorem concerned mappings of
compacta. In a generalized form (see [2], p. 91) it states that if a mapping
of a space is closed, then the dimension of the space does not exceed the
sum of the dimension of its image and the dimension of the mapping.
Evidently, the closedness of the mapping is a necessary hypothesis
here, but weaker inequalities may be proved without it. In the present
note we shall show two theorems in this direction (see 3.1 and 3.2);
instead of the closedness of the mapping some other conditions will be
assumed. One of them is the local compactness of the mapping, and there
are also restrictions on the deficiency and what I call an “inductive in-
variant” of the space.

J. de Groot was the first to consider an invariant of this kind in
connection with the notion of deficiency, introduced by him in 1942.
For a separable metric space X, the deficiency def X is defined (see [1],
p. 50) to be the least dimension of a set which can compactify X, i.e.

def X = min{dim(X —X): XeC(X)},

where C(X) denotes the family of all metrizable compactifications of X.
The inductive invariants appear in a natural way as a generalization
of the inductive dimension. They can be specialized for concrete purpo-
ses, e. g. the invariant “com X” in our terminology arises as a hypothe-
tical intrinsic characterization of the deficiency of a space (see [1], p. b1).

S. Mazurkiewicz constructed in 1927 an n-dimensional subset M
of the Cartesian product 7'x 8" of the Cantor ternary set 7' and the n-di-
mensional sphere 8" (n = 1,2,...) such that M is a G4-set and the pro-
jection of Tx 8" onto T, restricted to M, is an 1-1 mapping (see [5],
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p- 319). Suppose A4 is an n-dimensional subset of a compactum X and ¢
is a component of X. Then there are two “traces” of AonC:theset A ~ (¢

and the set ¢ ~ A—C. We shall prove (see 4.1) that for some component
of X at least one of such traces is at least m-dimensional. This follows
from a formula concerning closed mappings.

Yu. M. Smirnov noticed in a letter to me in 1962 that, given a closed
mapping f of a space X and a subset 4 of X, there exists a minimal set
A’ = X such that A < A4’ and f restricted to A’ is closed (see 1.1). Hence,
though the set function F(A4) = A is clearly not additive, and conse-
quently it does not satisfy the axioms of closure, the set A’ conld be called
the “closure of A relative to f”. We shall give (see 1.2) a formula for 4.

T. Nishiura has recently generalized some my results concerning
the dimension of quasi-components (see [7], p.9). If follows, for in-
stance, that

dim X < def X

for every mnon-compact space X whose quasi-components are locally
compact and O-dimensional. Observe that the above inequality gives
a sharpening of a result obtained by S. Mazurkiewicz in 1934 for spaces
whose quasi-components were single points (see [6], p. 267). The theorems
of T. Nishiura can, however, be sharpened and generalized further on
(see 3.2 and 4.2).

All spaces considered throughout will be separable metric. The clo-
sure of a set A will be denoted by A.

1. Closed mappings. A mapping f of a space X is said to be closed
if for every closed set ¢ in X the set f(C) is closed in f(X).

Suppose f is a closed mapping of X and 4 < X is an arbitrary set.
We shall denote by A’ the common part of all subsets Z of X such that
A < Z and f|Z is a closed mapping.

L1 If f is a closed mapping of a space X, then the mapping flA! is
closed for every A < X. Hence A’ is a minimal set in which A is contained
and on which f is closed.

Proof. Take a closed subset ¢ of A’ and a point y belonging to
f(47) A f(€). We have to prove that yef(C). So we can assume that there
exist points y;¢f(C) converging to y and different from ¥, whence Y = f(ay)
and @;eC for ¢ =1, 2, ... The image f(Q) of the set Q = {w:2i=1,2,..}
is not closed in f(X), and consequently the set ) is not closed in X, i.e.
there exists a subsequence @; converging to a point xeX.

If Z <X is a set such that A < Z and f|Z is a closed mapping,
then

@0 c A' = Z and yi; # yef(A') < f(Z)
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for j =1,2,... Hence the set f(Q'), where @' = {w;:j =1,2,..},
is not closed in f(Z), and consequently @’ is not a closed subset of Z;
therefore zeZ.

We get #eA’. Since z¢C and C is a closed subset of 47, we have zeC;
but clearly y = f(x), which yields yef(C).

1.2. If f is a closed mapping of a space X, then for every A < X the
set A’ is given by the formula

=Av U [~ A=)

vei(4)

Proof. Let us denote by P the set on the right side of the formula.
Evidently, f(P) = f(4). We first prove that f|P is a closed mapping.
Indeed, suppose on the contrary that there exists a set ¢' < P closed in P,
and a point '

Yo<[f(C) ~ F(P)1—F(C).

Then ¢ < P—f(y) and y,ef(C) < f(C) = f(C), the mapping f
being closed. It follows that y, = f(«,), where z,¢C. Since
Pcdec A—f" (o) v (o),
we obtain ¢ ¢ A—f"'(y,), and consequently
2oef ' (Yo) ~ T < f1(go) ~ A—F(3a),
which, together with the condition y,ef(P) = f(A4), implies z,eP. But the
set € being closed in P, we have x,eC, whence y,¢f(C), and this is a con-
tradiction. The mapping f|P is thus closed, and so 4’ < P.

Now, let Z be a subset of X such that A < Z and f|Z is a closed map-
ping. If wef '(y) » A—f'(y), where yef(A), then there are points
xie A—f~'(y) converging to « (4 =1,2,...). Put @ = {&;:4 =1,2,...}.

Since Q < Z and

y =f(@)<[f(@) ~ f(Z)]—f(Q),
the set @ is not closed in Z, which gives z¢Z. We infer that P < Z, and
therefore P = A’.

Remark. Theorems 1.1 and 1.2 are not true for non-metrizable
spaces. In fact, consider the Cech-Stone compactification BN of the discrete
countable infinite space N, an arbitrary point aefN —N and the natural
mapping f of BN onto the one-point compactification of N.If A = N v {a},
we have A’ = A and the mapping f|4 is not closed. If A = N —{a},

we have A’ — A, the mapping f|4” is closed, but the set on the right
side in the formula from 1.2 is equal to SN.

2. Inductive invariants. Let F be a topologically closed family
of spaces, i. e. such that for every FeF the family F contains all spaces
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homeomorphic to F. The inductive invariant 1(X, F) induced by F is
defined for every space X as follows: I(X, F) = —1 if and only if X eF,
and I(X,F)<mn provided that each point of X has arbitrarily small
open neighbourhoods U in X such that I(U—U, F) < n—1. For instance,
if C, is the family consisting only of an empty space 0, we have dim X
= I(X, C,). Observe that if F < F’, then I(X, F') < I(X,F) for every X;
this readily follows by induction on I(X, F).

Consider the families €, and C, consisting of all compact spaces and
of all locally compact ones, respectively. Further, let C; be the family
of all spaces X such that X contains a compact subset ¢ with dim(
= dimX. To denote the inductive invariants I(X,C;), induced by C,,
C,, and C,, we shall use the symbols com X, loccom X, and sub com X,
respectively. Since C, = C, < C,, we have

loccom X < comX < dimX

for every X. Each finite-dimensional space from C, belongs to €, which
implies that

subecom X < loccom X
for every X with dim X < co. Since C, < C,, it follows that
subcom X < com X

for every X. The inequality com X < 0 means that the space X is peri-
pherically compact, whence

comX < loccomX 41
for every X. There are also the inequalities
comX < defX < dimJX,

the first of whose can easily be verified by induction on def X, and the
second is a consequence of the Hurewicz theorem (see [2], p. 65). As
far as I know, the problem whether com X = def X, raised by J. de Groot
21 years ago (see [1], p.51), remains unsolved.

Finally, denoting by 2F the collection of all compact subsets of the
space X, we get

dim X < subcom X + sup{dim(': €2’} +1

for every X. The last inequality is verifiable without difficulty, by in-
duetion on subcom X,

3. Dimension of mappings. Suppose f is a mapping of a space X.
For a numerical invariant N (X) of spaces, e. g. N(X) = dim X, or N (X)
= com X, we shall denote by N(f) the number

N(f) = sup{N(f ' (y)): yf(X)}.
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If the invariant N (X) is monotone with respect to closed subsets
of X, which holds for all the invariants described in the preceding section,
except the invariant subcom X, then N (f) < N(X).

3.1. If f is a mapping of a space X, then
dim X < dimf(X)+ dimf+subcom X 1.

Proof. Let O be an arbitrary compact subset of X. Since f|C is
a closed mapping, it follows from the Hurewicz theorem (see [2], p. 91)
that

dimC < dimf(0)+ dimf|C < dimf(X)+dimf,
which yields 3.1 by virtue of the last inequality from the preceding
section.

The mapping f will be called locally compact if loccomf = —1, i. e.
if the set f~'(y) is locally compact for every yef(X).

3.2. If f is a locally compact mapping of a space X, then
dim X < dimf(X)+ max{dimf, def X}.
Proof. Let X be a compactification of X such that dim(X—X)

= def X. The projection g of the product X xf(X) onto the space f(X)
is a closed mapping (see [3], p.4). The graph

G = |(z, f(2)): ze X} = Xxf(X)
of the mapping f being closed in X xf(X), we have G—@G (X —X)xf(X),
whence
@& (W) =G~ g7 (y) =G ~ (Xx{})
=W x{}) v (@—6) ~ (Xx{y}) = (') v (XT—X) x{y)

for every yef(X). Put F, = f'(y). Since the set F, is locally compact
and closed in X, it is open in its closure ¥, in X and F,—F, «c X—X.
It follows that

dim F, = max{dim ¥, dim(F,—F,)} < max{dimf, def X},
which implies
dim (£~ (y) v (X — X)) = max{dim F,, def X} < max{dim{, def X}
for every yef(X). Thus we get
dim (¢|@)~"(y) < max{dimf, def X}

for every yef(X), i. e. dimg|@ < max{dimf, def X}. But g|@ is a closed
mapping and the graph G is homeomorphic to X. We infer by the same
Hurewicz theorem that

dim X < dim@ < dimg(@)+ dimg|G < dimf(X)+ max{dimf, def X}.
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Remark. Theorem 3.2 generalizes Theorem 1 from [4], as well as
Theorem 2 from [7], where as f some special mapping of the space X is
taken; namely, the sets f~'(y) coincide with the quasi-components of X.
The estimations of the dimension, given in Theorems 3.1 and 3.2, use
internal and external approximations of the space X by compacta, re-
spectively. Really, those compacta range over the collection 2>4n 8.1,
and the collection C(X) in 3.2. However, there is in Theorem 3.2 an addi-
tional hypothesis that the mapping is locally compact. A more full ana-
logy between internal and external cases can probably be done by intro-
ducing a suitable inductive invariant in 3.2. In this connection a question
remains unsolved (P 469) whether the inequality

dim X < dimf(X)+ max{dimf, def X} +loccomf+ 1
holds for every mapping f of the space X.

4. Dimension of components. The following theorem refers to the
Mazurkiewicz example mentioned at the beginning of the paper:
4.1. If A is a subset of a compact space X such that dim 4 ~ € < dim 4

for every component C of X, then there exists a component C, of X such
that

dimA4 < dimCy ~ A—C,.

Proof. Let f be the natural mapping of X onto the space of compo-
nents of X. Since f|4’ is a closed mapping according to 1.1, we have

dimA < dimf|4’,

by the Hurewicz theorem and the equality dimf(X) = 0. Consequent-
ly, 1.2 implies that

dim4 < dim((4 ~ @) v (Cy ~» A—C,))

for some C, = f~'(y,). The set €, ~ A—C, being compact and dim4 ~ C,
< dimA, we get the required inequality.
4.2. If every component C of a space X has a dimension dimC < n,
then
dimX <n-4subecomX+1.

Proof. The statement is obvious if subcom X = —1. Suppose
- subcom X is finite and 4.2 holds for spaces Y with subcom Y < subcom X.
Then each point of X has arbitrarily small open neighbourhoods U in X
such that
subcom (U —U) < subcom X —1
and the dimension of components of the set U—U does not exceed n;
thus
dim (T —U) < n+subeom (U —U)+1 < n-+subcom X,
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Remark. Since subcom X < ecomX < 0 for peripherically compact
spaces, Theorem 4.2 is a generalization of Theorem 2 from my paper [4].
On the other hand, each component is contained in a quasi-component,
and therefore the hypothesis in 4.2 can be replaced by the condition
that dim@ < n for every quasi-component @ of X. Theorem 4.2 with this
stronger hypothesis is a sharpening of Theorem 3 from paper [7] of
T. Nishiura, where the dimension of X is estimated from above by
the sum n-4def X4-1.
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