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COMMUTATIVE REGULAR SEMIGROUPS
BY

P. JAREK (TORUN)

Dubikajtis and Jarek [3] have investigated connection between
commutative regular semigroups and elementary pseudogroups (1).

This paper is devoted to the study of the structure of commutative
regular semigroups and their homomorphisms. I show that it is possible
to associate with every commutative regular semigroup a direct system
of Abelian groups over a semilattice. This correspondence enables us to
describe all homomorphic images of a commutative regular semigroup
and thus to generalize the well known theorem concerning homomorphic
images of Abelian groups.

§ 1. Partially ordered sets. Direct systems of Abelian groups.
A set T is said to be partially ordered if there is in T a binary relation <
which is defined for certain (not necessarily for all) pairs ¢,, {,¢ 7 and which
is reflexive, transitive and antisymmetrie.

A partially ordered set T' is said to be a directed set if for any t,, t,eT
there exists an element t;¢7' such that t, <i; and ¢, < t,.

A partially ordered set 7' is called a semilattice if for any t,,1,eT
there exists their smallest upper bound t,+1,eT (2).

Any semilattice is of course a directed set.

Let T' be a partially ordered set and ~ an equivalence relation in 7'
(i.e. a binary relation, which is reflexive, transitive and symmetric).
We shall denote by 7 the equivalence class of t, i. e., the set of all elements
t'eT such that ¢’ ~ ¢, and by T the set of all equivalence classes 7.

It is well known (see [4]) that if the relation ~ satisfies the conditions

(1) The notion of an elementary pseudogroup has been introduced by Dubi-
kajtis in [2].

(*) We shall use the notation ¢, --t, for the smallest upper bound of t, and t,.
This shall be convenient, since all semilattices considered in this paper are semigroups
with addition as the group operation, and the smallest upper bound always coincides
with the sum of two elements.
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(a) if t,<t<t, and t, ~1,, then ¢t ~1,,
(b) if 1, <t,, then for every f; ~t, there exists an element t; ~,
such that ¢ <,

then the ordering relation < induces a partially ordering relation in Z.
defined as follows:

7, <1, if and only if there exist elements ¢, ~#, and t, ~1, such
that ¢, <t1,.

An equivalence relation ~ defined in a semilattice T' is said to be
a congruence relation, if

(¢)  for any t,,t,tel if ¢, ~t;, then t,+t~t+1t.

It is evident that a congruence relation satisfies conditions (a) and
(b) and that the set 7' is again a semilattice. Moreover, the smallest upper

bound of fl and ¢, in T is m (see [1], p. 44).

Two partially ordered sets 7 and S are called similar if there exists
a one-to-one transformation ¢ of 7' onto 8 such that for any ¢,, {,¢T the
relation t, < t, holds if and only if ¢(f,) < @(t;). ¢ Will be called a simelar-
ity-function of T and 8.

Let T be a directed set. Suppose that to every teT there corresponds
an Abelian group @, and to every pair ¢, T such that ¢ <{' there cor-
responds a homomorphism h;, of @ in G,. The system {Gi, by ¢}ir of
groups G, and homomorphisms % , is said to be a direct system over
the directed set T, if

(1) for any teT, hy, is the identity isomorphism of G¢,

(2) for any t,¢,t" T such that ¢ <t' <t the diagram

Gt — G‘r

N v
hs,w\ / b, e
Gy
is commutative (®).
Two direct systems {Gy, by phier and {Fs, fs s}ees OVer directed sets
T and S are called isomorphic, if there exists a similarity-function
@o: T — 8 and a family of mappings {g}wr such that

(3) Commutativity of diagrams

o G2 51
P S
F F—I;—rK

means that f = hg and kf = hg respectively.
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1° ¢ is for any teT an isomorphism of @ on F, ),
2° for any t <t the diagram

@G, _f“_‘__,G;,

-;o{ lfp,.

e
L i
where @,(f) = 8, @o(t') = &', is commutative.

A direct system {G, hy ;}sr over T will be said to be a reqular system,
if 7' is a semilattice and the groups G; are mutually disjoint.

Suppose that to every t<7T' there corresponds a subgroup H, of G,
such that

(3) for any ¢, eT if t <, then hy(H;) = H,.

Then, the subgroups H; together with the homomorphisms hy ¢ res-
tricted to H; form again a direct system over 7, called the subsystem
of the system {Gy, hy ¢ }rer (%).

Let {Hy, h,y}ir be a subsystem of the direct system {Gi, hy y}p.
In view of (3), every homomorphism %, induces a homomorphism Eﬂ. ¢
of the factor group G,/H, in G,[H,. The family of factor groups G,/H,
together with the induced homomorphisms %, , form again a direct system
{Gi/Hy, by ¢ }ier over T, which we shall call a factor system of {Gy, by ¢}
with respect to the subsystem {Hj, b ¢}ir.

Let T, be a subset of T, which is again a directed set. We may consider
the direct system composed of all these groups G; and homomorphisms
h¢ ¢, whose indices belong to T,. We shall call this system a partial direct
system determined by the subset T,.

Let {G¢, by ¢ }ier be a direct system over 7. Y @ will denote the direct
teT

sum of groups G;. Let @ be the subgroup of }' @ generated by all elements
teT

of the form g,— k4 (g:), ¢t and t' being arbitrary elements of T such that

t <, and g, being an arbitrary element of @,. The factor group G* =

= Y'@/Q will be called the direct limit of the direct system {Gy, hyy}er.
teT

It is well known that direct limits of isomorphic systems are iso-
morphic.

For any te7 a natural homemorphism k; of G; in G* may be defined
a8 follows: h; is the superposition of the natural embedding of G, in Z G,

and the canonical homomorphism of ZG; on G,
teT

(*) We shall denote the restricted homomorphisms of the subsystem by the
same symbol hg .
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The following properties of this homomorphism are known (see [5]):
(A) For any ¢,t'eT such that ¢ <t' the diagram

G; ht' ¥ G 1
\\ //
hy - hy
G®

is commutative,

(B) U Imh, = G=.

teT
(C) Kerhy = | Kerhy, for any teT (5).
i<t

(D) For any t,, t,eT and g Gy, gi, € Gy, the equality hy (9,) = he,(gr,)
holds if and only if there exists an index ¢ such that ¢, <t, #, <t and
he,, 1(9t,) = Py, 1(gu,)-

(E) Let @ be an arbitrary Abelian group, {Gi}.r — a family of sub-
groups of @ such that | G; = @ and for any groups G; and G, there exists

teT

a subgroup @, containing & and @,. The group G is then isomorphic with
the direct limit of the direct system composed of the groups &; and em-
beddings ¢, of G in Gy, where G; < Gy.

We shall prove the following

THEOREM 1. Let {Gy, hy vhier and {F, f; o}ses be two direct systems
of groups over directed sets T and 8 respectively. Suppose that to every teT
there corresponds at least one seS and a homomorphism ¢y s of Gy in Fy in
such a way that following conditions are fulfiled:

1° If @1, is defined, then for any 8" > 8, ¢, 18 defined.

2° Foranyt <t ands <s',if gy s and gy o are defined, then the diagram

hy, o

G, -Gy
P, si Jﬁptr,s'
By——>,
S %

is commutative.

Under these assumptions there ewists a homomorphism ¢*:G* — F*
such that the diagram h
t

LI

(4) %'{ Jtp

Fy——F®
f —

8

2

is commutative, whenever ¢, , 8 defined.

(*) Im k¢ and Ker k, denote the image of G¢ under the homomorphism A and the
kernel of h; respectively.
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Proof. Let g be an arbitrary element of G*. From (B) it follows
that there exists an index te7 and an element g,eG; such that &(g,) = g.
Let s be an arbitrary element of § such that ¢; , is defined.

Let

¥>(9) = fs(‘?’t,s{gs)) ’

where f, is the natural homomorphism of F, in F*.
We shall first prove that ¢™ is well defined, i. e., if for arbitrary
tiytaeT, gi €Gyy Gi,eGy, the equality

(5) ha, (91,) = Py (gt,)

holds, then for arbitrary s,,s,eS we have

(6) Fou (9,5, (98)) = fi, (915, 5,(92,))

whenever ¢, , and ¢, ., are defined.
Indeed, equality (5) implies, by (D), that there exists an index ¢
such that ¢, <¢, {, <t and

(7) by, 1(9e,) = My e(ge,)-

Let s be an element of § such that s, <s, s, <s and that ¢, is
defined (existence of such an index follows immediately from assump-
tion 1°). Consider the diagram

h h
L BN . L 1)
%1,31 ‘ @t.s lmsz,sg
v + \)

7, o S— )

in which every square and every triangle is commutative (see assump-
tion 2° and (A)). We have f, (¢, 5, (9:,) = f[pt,, s(he;,e(9¢))], © = 1, 2, Whence,
by (7), equality (6) holds true.

Now we shall prove that ¢ is a homomorphism. Let g,, g,¢G* and
let g <Gy, g1,€G1, be two elements such that hy(gy) = g: (¢ =1, 2). Let
teT be such that ¢, <t and t, <t, and let g; = hy .(gr), 9 = huy,e(8y,)-
From the commutativity of the diagram



we obtain hy(g:) = he(hy,(9r)) = ke (9,) = g1 and hy(gy') = hy(hyy i(gy)) =
= hy,(91,) = g We have h(gi+¢,') =g,+9,, since h, is a homo-
morphism. Hence, for a suitable seS, we have 2% (1) +9¢%(g.) =
=fs(99t,a(g;)) +fa(?’t,a(9;,)) — fa(‘?’s,a{g; +95')) = ¢~ (g1+9g2).

To end the proof we observe that commutativity of diagram (4)
is an immediate consequence of the definition of homomorphism ¢%.

COROLLARY 1. Let {Gy, hy v}ir, {Fs,fs s}ses and {D,, A, }rer be direct
systems of groups over directed sets T, S and R respectively, {py s}, {vs,s} and
{Me} — families of homomorphisms of {Gy, by in {Fy, fyeles, of
{Z asfs,s'}sgs in {D,, dr, rirr and of {Gy, kt, vher TN {D,, dr, iR respectively,
satisfying the assumptions of theorem 1. Moreover, suppose that for any
teT, seS and reR the diagram

q % .7
N P
(8) At,r\ /%"8.!‘
D,

i8 commutative, whenever g, ,, Ys,r and A . are defined.
Then the diagram

a e B S

where ¢, y* and A° are homomorphisms defined in the proof of theorem 1,
8 commutative.

Proof. For an arbitrary geG* and gee@ such that k,(g;) = g the com-
mutativity of diagram (8) implies A°(g) = d,(4,,(g;) = dy s, (7,5 (90)))
for suitable r¢R and seS, where d, is the natural homomorphism of D,
in D>,

On the other hand, we have ¢®(g) = fi(¢,s(g) and therefore,
in view of the definition of homomorphism y®, we obtain y* (¢™(g) =
= dp|ys,r(91,5(90)]- Thus 1*(g) = ¥°(¢™(g)), which ends the proof.

Let {Gy, hy,v}r be a direct system of groups over the directed set
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T, ~ — an equivalence relation in 7' satisfying conditions (a) and (b).
Moreover, suppose that

(d) for any t,1 T, if t ~ ', then there exists an element ¢’ T such
that ¢t <t”, t' <t and ¢t ~¢".

In this situation every equivalence class 7 is again a directed set and
so we can take into consideration the partial direct system {Gy, hy i}eg
determined by .

For any i, 5, 7eT such that ¥ < § <7 the families of homomorphisms
{ht',s’}: {hS'.r’} and {ht’,r’} of {G!'s kt'.l”}t'sf in {GS’! hs’,s”}s'zgi of {GS’? hs',s”}s';?
in {Gy, he o}eer and of {Gy, hy v}eg in {Gy, by o}z satisfy conditions
of Corollary 1.

Denote by G7 the direct limit of the partial system {Gy, hy s}y and,
for i < s, let k-?fg be the homomorphism of G? in @5 as defined in the
proof of theorem 1.

The following statement follows immediately from Corollary 1:

COROLLARY 2. The family of groups G% together with the homomor-
phisms h7; form a direct system over T.
Remark. If {G;, by ¢}r is a regular system, ~ — a congruence

relation in the semilattice 7, then the derived system {G7, h"{';—} np 18
again regular.

§ 2. Commutative regular semigroups. A set G in which a binary
associative operation is defined (called addition and denoted by --) is
called a semigroup.

A semigroup G is called commutative if the operation -+ is commuta-
tive, and it is said to be regular if for any geG there exists an element
ae@ such that g+a+g =g (°).

A subset H of the semigroup G is called a subsemigroup if g, + g, H
for any ¢,, gs<H.

We shall call zero every element x of the semigroup & such that
2+ x = x. The set of all zeros of G will be denoted by @,.

A subsemigroup of a regular semigroup which is again regular will
be called a regular subsemigroup.

If @ is a commutative regular semigroup, then G, is, of course, a re-
gular subsemigroup.

(*) Regular commutative semigroups have been studied in [3]. We have used
there multiplicative notation for the semigroup operation. In this paper additive
notation will be more convenient on account of similarity of the theory of commuta-
tive regular semigroups to that of Abelian groups. Just for that reason we shall modify
the terminology and some notation, for example the direction of the partially ordering
relation introduced in [3]. A larger class of semigroups has been studied by Clif-
ford [la].
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A regular subsemigroup of a commutative regular semigroup @ is
said to be a characteristic subsemigroup if it contains the zero-subsemigroup
G, of G.

We shall use later on in this paper four results, listed below, which
have been proved in [3] or which are immediate consequences of theorems
proved in [3]. In this list ¢ always denotes a commutative regular semi-
group.

(I) For any geG there exists exactly one element O(g)eG, and one
element —geG such that g+ 0(9) =g,9+(—g) = 0(g), (—9)+0(9) =
= —g, 0(—g) = 0(9)-

(IT) For any g,, <G we have 0(g,+gs) = 0(g1)+ 0(g2), —(91+ 92) =
= (—61)+(—g2)- If geG,o, then O(g) =g.

(III) For any xe@, let G, be the set of all geG such that O(g) = @.
G, is an Abelian group with respect to the operation 4, x is the zero of
G,, —g the inverse of g. If « # y, then the groups G, and @G, are disjoint.
@ = | )G,

Telly

(IV) For arbitrary =, yeG, let < y if and only if #+y = y. The
relation < is a partially ordering relation and @, is a semilattice with
respect to <, x-+y being the smallest upper bound of z and y (7).

THEOREM 2. Let x, yeG, and x <y. Define a function h., in G. by
the following formula:

he,y(9) = g+y  for any  ge@,.
Then
1° hy , is a homomorphism of G, in @,,
2° for any ® <y < z the diagram

@ My g
B .
k”-"‘\\ ;// Do
G,

18 commutative.

Proof. 1° In view of @ <y, (II) implies O(g+vy) = 0(9)+0(y) =
= x+y = y, whence g+ yeG,.

By (II), for any g¢,,¢,¢G, we have he,y(g1+92) = (91+92) +y=
= (01+9)+ (92t Y) = he y(g1) + he,y(9)-

(") In [3], O(g) was denoted by a(g), and —g by g (df. 85 and df. S1). (I) follows
from theorem 82 and theorem S4 in [3]. Similarly, (II) is the form of theorem S7 and
theorem S88. (III) follows from theorem 3 and theorem 4. Relation < (with inverse
direction) was introduced in [3] in the whole semigroup @ (df. S4). (IV) follows from
the remark after theorem S10.
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20 If o<y<z then we have hy s(hs y(9) = hy (9+Y) = (9+¥)+2
= g+2 = hg 2(9)-

COROLLARY 3. For any g, G and g, G, we have hy . y(g:1) + by 2y (9:) =
= 1+ Y-

Proof. hz,zg.y(91)+hv,z+y(gz) =g+ @+y)+g.+(@+y) = (g1 +92)+
+(z+ ).

By (II) we have O(g,+¢.) = 0(g:)+0(g.) = #+y, whence, by (I),
(g1+92)+ (®+Yy) = g1+ 9., which ends the proof.

Remark. In view of theorems (III), (IV) and theorem 2 the family
of groups G, together with homomorphisms %, , form a regular system
of groups over the semilattice &,. This system will be said to be associaied
with the commutative regular semigroup G.

THEOREM 3. Commutative reqular semigroups G and F are isomorphic
if and only if their associated direct systems {Gg, hs, ey A {Fy, fy vtyer,
are isomorphic.

Proof. Let ¢ be an isomorphism of G onto F, let ¢, be the restriction
of ¢ to Gy, ¢, — restriction of ¢ to G,. It is easy to see that ¢, is a similarity-
function of &, and F,, ¢, — an isomorphism of &, onto F . Let z, 2’ @y,
2 <, g@) =y, p(@)=y. For any geG we have gu(h; o (9)) =
= glg+a') = ¢(@)+o@) = ¢(@)+y = fur(@@) = four(ra(9), thus g,
and the family {g,},.q, establishes an isomorphism of the associated systems
of G and F.

On the other hand, suppose that associated systems {G., ks o}z,
and {Fy, fy y}yer, of & and F are isomorphic, ¢, and {p;}zq, being the
corresponding mappings. Then the function ¢ defined for geG by ¢(g) =
= ¢,(g) if ge@, is an isomorphism of G onto F.

In fact, ¢ is one-to-one and, for any g,¢G, and g,eG.,, if we write
Ly + @y = &, Po(®1) = Y1y Pol(®2) = Y2, ¢(@) =V, then in virtue of Corol-
lary 3, of the commutativity of suitable diagrams and of the fact that ¢,
is an isomorphism, we get

p(g1+9.) = f}‘(kxi_;(m)%* hza,m(gz}) = ‘P,a:(k'.n],x(yL) i hzi_.a:(gz))
= @z(hzsl,x(gl))—i“p.c (h.rg,:»{!]z)) e fy;.y(‘;"‘.q(gl}]+f;.:2,y(‘f.n2 (‘la))
= ‘f‘.r] (91}+?":n.{!fz) = Q’(9'1)+93’(92)

Now we shall prove that every regular system of groups is the asso-
ciated system of a suitable commutative regular semigroup.

THEOREM 4. Let {G., h, 4}z, be a reqular system of Abelian groups

over a semilatlice G,. The set G = \J G, is a commutative regular semigroup
weldy
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with respect to operation + defined as follows: for any ¢, g,e G if g,¢ G,
and g,eG,, we set

91+9: = hz,:t-+w(91)+hra,x+y(gz) (.

Moreover, if we identify index x with the zero of the group G, then the
system {G,, h,, y}mgﬂ will be identical with the associated system of @.

Proof. From the disjointness of the groups @, it follows at once
that any geG belongs exactly to one group @,, so the operation -+ in @
is well defined.

Commutativity of the operation 4 in & follows from commutat-
ivity of the group operation in the groups @.,.

To prove the associativity observe that in virtue of the commuta-
tivity of suitable diagrams formed by the homomorphisms &, , we obtain
for any g, G, g, <G, and g, @, the equations (g1+9.)+9g; = {kx,m_w_z(gl)—!—
‘Jf‘hy.r+ﬂ+z(9'2}]‘i‘ hz 2y y:2(gs) and g, + (92t 93) =hz 21y, z(gl)+(hu,z+y+z(§'2)+
+ bz, 21 y12(5)), and thus the equality (g, + gs)+ 3= ¢+ (g2 + ¢,) immedia-
tely follows from the associativity of the group operation in G,.,.,..

Observe that since h, , is the identity isomorphism of @,, the opera-
tion + defined in @ coincides for elements of @, with the group operation
in @,. So for any geG, we have g+ (—g)+g = g, where —g is the inverse
of g in G, thus G is regular.

If we identify index 2 with the zero of &, (the zero-subsemigroup of @
is then identified with the semilattice G,), then the order relation < in-
troduced in the zero-subsemigroup of ¢ in the manner described in theorem
(IV) will be identical with the previous order relation in @,.

To end the proof that {@,, h. ,}.c, is the associated system of @
we must show that h,,(g) = g+y for any » <y, (v,yeG,) and for
any ge@,.

In fact, it immediately follows from the definition of the operation -+
in G that g+y = hm,x-iv(g)+hy,v-|u{?f) = h‘f,y(g)+}f1:,::(;’f} = h:c,u(g)‘l"y =
= hz 4 (9)-

In view of theorems 2, 3 and 4 there is a one-to-one correspondence
between commutative regular semigroups and regular systems of Abelian
groups. Every commutative regular semigroup may be identified with
its associated system. This identification will be used to determining
all homomorphic images .of a given commutative regular semigroup.

THEOREM 5. Let G be a commutative reqular semigroup, H — a subset
of G and let H, = H ~ @,. H is a characteristic subsemigroup of G if and
only if {Hy, by y}ea, is a subsystem of {G,, he, y}aty-

(*) We use here the same symbol + for the group operation in any group Gz
and for the smallest upper bound in the semilattice ag,.
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Proof. 1) Let H be a characteristic subsemigroup of . It follows
immediately from the regularity of H that H, is a subgroup of 7, for every
zrely. Moreover, h, ,(g9) = g+ yeH, for any geH, and an arbitrary yeG,
such that » <y, since &, = H. Thus {H,, h, y}.q, is @ subsystem of
{G.c} h:c, y}x:ﬁ'u-

2) Now, let {H,, h; ,}sq, be a subsystem of the associated system of .
We must prove that H = () H, is a characteristic subsemigroup of G.

Tl

H, is a group, whence :seHo_,r. Thus H contains the zero-subsemigroup
G, of G. If ¢,eH, and g,¢H,, then, by Corollary 3, we have g¢,+ ¢, =
= hy i y(g1)+ Py 2 y(9s) eHy oy, thus H is a subsemigroup. The regularity
of H follows at once from the fact that all H, are groups.

Now we shall study homomorphic images of a given commutative
regular semigroup. It is easy to see that a homomorphic image of a com-
mutative regular semigroup is again commutative and regular.

Let ¢ be a homomorphism of the commutative regular semigroup &
onto F. The set of all geG such that ¢(g)el, (i. e., ¢(g) is a zero in F)
will be called the kernel of the homomorphism ¢ and will be denoted by
Kerg.

THEOREM 6. For every homomorphism ¢ of an arbitrary commutative
reqular semigroup G, Kerg is a characteristic subsemigroup of G.

Proof. If xz e, then ¢ (x) = ¢(w+x) = ¢(x)+¢(z), whence ¢ (x)el'y,
thus zeKerg.

If ¢, ¢9.<Kerg, then ¢(g,),¢(g.)eF,. Hence ¢(g,+g:) = ¢(g.)+
+@(g.)eFy and g,+g,eKerg.

It is evident that Kerg ~ ¢, is a subgroup of ¢, and therefore it
follows at once that Kerg is regular. This ends the proof.

Let ¢ be a homomorphism of the commutative regular semigroup &
onto F. We shall define a relation ~ in G, as follows: for any x, #" G,
let @ ~ ' if and only if ¢(2) = @(2"). It is evident that

1° the relation ~ is a congruence relation in the semilattice G,

2° the set @, of equivalence classes with the induced order is similar
to F,.

Thus every equivalence class @ (xel,) is again a semilattice and so
we may consider the partial system of {G., h, ,}.c, determined by z.

On the other hand, since Kerg is a characteristic subgroup, it deter-
mines (see theorem 5) a subsystem {K,,h, ,,},,J;n (K, = Kerg ~G,) of
{”.a‘a h,r., y}qu’o-

The partial system {K.,h..}.; is of course a subsystem of the
partial system {G,, h. .},;. Thus we can form the factor system
{G./K., hy }.;. Let G5 be the direct limit of the last system.

LeMMA 1. The group G7 is isomorphic with F,, where y = ¢ ().
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Proof. It is easy to see that the family of subgroups {p(@.)}.; of
the group F, (¢(@,) is the image of the group @, under homomorphism ¢)
satisfies the conditions of theorem (V). Thus F, is isomorphic with the
direct limit of the direct system composed of the groups ¢ (6,) and embed-
ding-homomorphisms 4, ,.

On the other hand, let ¢, be the natural isomorphism of @,/K, onto
@(@) (i. e., the isomorphism which maps the K -residue class of ge@, into
?(9)).

It is easy to see that the diagram

kz, F-4

Gz/Kz ‘—*Gs:’ /Kz’
Epzl J"i—pz'
9 (G-) - —>¢(Gx)

is commutative for any 2,z ez such that z < 2.

Hence the systems {¢./K,, k, ,}.; and {p(G.), i. »}.; are isomorphic
and therefore it follows that their direct limits are isomorphic too.

Remark. The natural isomorphism of @ onto F, may be defined
as follows: for any geG; we take an arbitrary J.€G. /K, (2¢x) such that
hs(§z) = g (k. is the natural homomorphism of @,/K, in G5) and we set
9z (9) = 9:(7). N

Now, all the direct limits G; of partial direct systems determined by
equivalence classes # together with homomorphisms 3?5 described in
the proof of theorem 1 form again a direct system with @, as its index
set (see Corollary 2).

It is not hard to verify the following

LeEMMA 2. Direct systems {G:, EE;—} &Gy, and {Fy, fy ytya, are
isomorphic. The isomorphism is established by the similarity-mapping
@0 of @, onto F, which maps the class & e, onto @ (z) and the family of iso-
morphisms {@?}5‘50.

The following theorem is an immediate consequence of lemma 2
and theorem 3:

THEOREM 7. The commutative regular semigroup determined by the
system {Gz EEE'}&@, ts isomorphic with the semigroup F.

Let H be a characteristic subgroup of a commutative regular semi-
group G, {G;, hy y}r, and {H,, h,, ytze, — their associated systems
and let ~ be a congruence relation in the zero-subgroup G, of G. We
can construct the factor system {G,/H,, k,, vz, and further on, in the
manner described in Corollary 2, the direct system {Gf,7;;) G, The
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last system is regular, since @, is a semilattice. Thus it determines a com-
mutative regular semigroup which we shall call the factor semigroup of G
with respect to the characteristic subsemigroup H and the congruence
relation ~. We ghall denote it by G/(H, ~).

We are now in a position to formulate a theorem which is the in-
verse of theorem 7:

THEOREM 8. For every characteristic subsemigroup H of a commu-
tative reqular semigroup G and every congruence relation ~ in the zero-sub-
semigroup G, of G the factor semigroup G[(H, ~) is a homomorphic image
of G.

Proof. Let g be an arbitrary element of G. There exists an element
we@, such that geG,. We shall denote by § the H,-residue class of g.
Let ¢(g9) = h;(§), where k, is the natural homomorphism of @,/H,
in G=.

We shall prove that ¢ is the required homomorphism of G onto
G/(H, ~).

Let g,¢Gyy 2€Gayy §1 = g1+ Hayy §o = g2+ H,, and let 42, = 2. Of

course, we have g,+g, = §,+§.¢G,/H, and ,+z, = &.
It follows from theorem 1 that diagrams

k"":i =00
Gmf/Ha'i == el G.’Ei

9) %l A
6, —5— 0

(¢t =1,2) are commutative, whence by Corollary 3 and the definition
of operation + in G/(H,~) (see theorem 3) we obtain: ¢(g,)+¢(g:) =

= kx1(91)+kzz(gs) — k:cl { xl(gl))+hx2 x(k:c2(gz)) — h (kcl x(gl. )‘I‘k (k.t2 ::(9’2))
=h (kzl 2(F1) + kx2 x(.fz)) = k (G1+G2) = @(g:1+92).

It is evident that the image of @ under homomorphism ¢ is the whole
semigroup G/(H, ~).

It follows immediately from theorem 7 that if ¢ is a homomorphism
of a commutative regular semigroup G onto F, H = Kerp, ~ — the
congruence relation in @, determined by ¢ (i.e. x ~ 2’ if and only if
7(x) = ¢(2")), then the semigroup F is isomorphic with the factor semi-
group G/(H, ~).

Thus we have proved

COROLLARY 4. Factor semigroups of a given commutative reqular semi-
group G with respect to characteristic subsemigroups and congruence relations
of the zero-subsemigroup @, are the only homomorphic images of G.
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