ON A KIND OF DISPERSION OF SETS

BY

J. S. LIPIŃSKI (ŁÓDŹ)

All sets considered are contained in the interval [0,1] and are Lebesgue measurable. Given a set E we put $E^n = f_n^{-1}(E)$, where $f_n(x) = nx - [nx]$ and [a] denotes the integral part of a. Thus E^n may be called the dispersion of order n of the set E.

A lemma of Ulianov (1) states: if

$$\sum_{n=1}^{\infty}|E_n|=\infty,$$

|E| denoting the Lebesgue measure of E, then there exists a sequence of integers $i_1 < i_2 < \ldots$ such that

$$|\overline{\lim} E_n^{i_n}| = 1.$$

G. C. Shindalovski has asked whether (2) holds for every increasing sequence $\{i_n\}$ (2). We shall show that the answer is negative. According to a message submitted to the author by D. Menshov this result has been obtained also by E. P. Dolchenko.

THEOREM 1. Given an increasing sequence of integers $\{i_n\}$ and an $\varepsilon > 0$, there is a sequence of sets E_n fulfilling (1) and such that

$$|\bigcup_{n=1}^{\infty} E_n^{i_n}| < \varepsilon,$$

$$|\overline{\lim}_{n} E_{n}^{i_{n}}| = 0.$$

Proof. First note that $|E| = |E^i|$, i = 1, 2, ..., for every set E. If E is periodic in [0, 1] and its period is 1/m (i. e. 1/m is the period of

⁽¹⁾ П. Л. Ульянов, Расходящиеся ряды Фурье, Успехи Математических Наук 14 (1961), р. 61-142, especially p. 125.

⁽²⁾ Problem put forward in 1961 in Moscow on a seminar on real functions directed by Menshov and Ulianov.

its characteristic function), then for every divisor n of m we have

$$|E| = |f_n(E)|,$$

$$(f_n(E))^n = E.$$

If $0 < \varepsilon_k < 1 \ (k = 1, 2, ...)$ and

(7)
$$\sum_{k=1}^{\infty} \varepsilon_k < \varepsilon,$$

then we choose positive integers m_k so that

(8)
$$\sum_{k=1}^{\infty} m_k \varepsilon_k = \infty.$$

Put $\mu_0=0$, $\mu_k=\sum\limits_{j=1}^km_j$, $w_k=\prod\limits_{n=\mu_{k-1}+1}^{\mu_k}i_n$. Let A_k be a periodic set in [0,1) with period $1/w_k$ and

$$(9) |A_k| = \varepsilon_k.$$

For every n there is precisely one k_n such that $\mu_{k_{n-1}} < n \leqslant \mu_{k_n}$. We put

$$E_n = f_{i_n}(A_{k_n}).$$

Since i_n is a divisor of w_{k_n} , on account of (5) and (9) we have

$$|E_n| = |f_{i_n}(A_{k_n})| = |A_{k_n}| = \varepsilon_{k_n}.$$

Hence, from (8),

$$\sum_{n=1}^{\infty}|E_n|=\sum_{k=1}^{\infty}\sum_{n=\mu_k,\ j+1}^{\mu_k}|E_n|=\sum_{k=1}^{\infty}m_karepsilon_k=\infty.$$

Thus (1) is fulfilled.

By (6) we have $E_n^{i_n}=A_{k_n}$. Hence $\bigcup\limits_{n=1}^\infty E_n^{i_n}\subset \bigcup\limits_{k=1}^\infty A_k$. From (9) and (7) it follows that

$$|\bigcup_{n=1}^{\infty} E_n^{i_n}| \leqslant \sum_{k=1}^{\infty} \varepsilon_k < \varepsilon$$

and so we get (3). Now for any $\eta > 0$ we choose first an r so as to have

(10)
$$\sum_{k=r}^{\infty} \varepsilon_k < \eta,$$

the choice being possible owing to (7), and the an m such that $\mu_m > r$. Then

$$\bigcup_{n=\mu_m}^{\infty} E_n^{i_n} \subset \bigcup_{k=r}^{\infty} A_k.$$

This yields $\lim_{n \to \infty} E_n^{i_n} \subset \bigcup_{k=r}^{\infty} A_k$. Hence, by (9) and (10) we obtain (4) for an arbitrary η . Theorem 1 is thus proved.

We will now distinguish a class of sequences of sets for which the question of Shindalovski admits a positive answer:

THEOREM 2. If $|E_n| > \delta > 0$ for infinitely many n, then (2) holds for every increasing sequence $\{i_n\}$.

Proof. Without loss of generality we may assume that $|E_n| > \delta$ for every n. Given an interval $(\alpha, \beta) \subset [0, 1)$ we choose N so as to have $1/i_n \leq \beta - \alpha$ for n > N. Then

$$[a,\beta) = \bigcup_{j=1}^{k} \left[a + \frac{j-1}{i_n}, a + \frac{j}{i_n} \right] \cup \left[a + \frac{k}{i_n}, \beta \right],$$

where $0 \le \beta - \alpha - k / i_n < 1/i_n$ and $k \ge 1$. For every interval $I \subset [0, 1)$ of length 1/n and every set E we have $|I \cap E^n| = |E|/n$. Hence

$$|E_n^{i_n} \cap [a, eta)| = \sum_{j=1}^k \left| E_n^{i_n} \cap \left[a + rac{j-1}{i_n}, a + rac{j}{i_n}
ight) \right| + \left| E_n^{i_n} \cap \left[a + rac{k}{i_n}, eta
ight) \right|$$
 $= |E_n| rac{k}{i_n} + \left| E_n^{i_n} \cap \left[a + rac{k}{i_n}, eta
ight) \right|.$

This implies

$$rac{|E_n^{i_n} \cap [lpha,eta)|}{eta-lpha} > rac{|E_n|}{(k+1)/i_n} > rac{\delta}{2} \hspace{0.5cm} (n>N).$$

The interval $[\alpha, \beta)$ being arbitrary, we infer that the density of the set $\overline{\lim_{n}} E_{n}^{i_{n}}$ is at least $\delta/2$ at every point in [0, 1). So (2) follows from the Lebesgue density theorem.

P 470. Do there exist sequences of sets E_n such that $\lim_n |E_n| = 0$ and (2) holds for every increasing sequence $\{i_n\}$?

Let us notice that the order of divergence of the series $\sum_{n} |E_n|$ is of no importance as far as condition (2) is concerned. In fact, for any series $\sum a_n = \infty$ we can choose the numbers m_k appearing in the proof of theorem 1 in such a way that the series $\sum_{n} |E_n| = \sum_{n=\mu_n-1}^{\mu_n} |A_j|$ be a majorant of $\sum_{n} a_n$. Nevertheless (4) does hold.

UNIVERSITY OF ŁÓDŹ