CONCERNING ALMOST PERIODIC EXTENSIONS OF FUNCTIONS

BY

C. RYLL-NARDZEWSKI (WROCŁAW)

One says that a set Z of real numbers has the property I_0 ($Z \in I_0$) if
(1) every real and bounded function defined on Z can be extended
to a uniformly almost periodic (u. a. p.) function on the real line.

More detailed informations on the property I_0 and other related no-
tions can be found in [1]. Let us reproduce here only two simple propositions
concerning I_0 (cf. [1], p. 25):

PROPOSITION 1. Sets Z with property I_0 are either finite or denumerable
and discrete.

PROPOSITION 2. In the definition (1) of the class I_0 it suffices to assume
that only functions taking on two values only (e. g. zero or one) on Z admit
u. a. p. extensions.

We will prove the following property of the class I_0:

THEOREM 1. If $Z \in I_0$ and F is a finite set of real numbers, then $Z \cup F \in I_0$.

Proof. Obviously we can restrict ourselves to the case when the set Z
is denumerable, F is a one-point set $\{z_0\}$ and $z_0 \notin Z$. Let us observe that
it suffices to prove the existence of a u. a. p. function $e(t)$ such that

(2) $e(z_0) = 1$ and $e(z) = 0$ for all $z \in Z$.

In fact, in such a case the formula

(3) $f = f(z_0)e + (1 - e)(f|_Z)$,

where $(f|_Z)$ denotes a u. a. p. extension of the restriction to Z of a bounded
and continuous function f given on the set $Z \cup \{z_0\}$, yields a u. a. p.
extension of f.

Let us assume now for a moment that (2) fails, i. e., the following
uniqueness condition holds:

(4) If f_1 and f_2 are u. a. p. functions and $f_1(z) = f_2(z)$ for all $z \in Z$,
then $f_1(z_0) = f_2(z_0)$.
We will show that (4) produces a contradiction. On the ring \(B(Z) \) of all real and bounded functions on \(Z \) we define the functional \(\varphi \):

\[\varphi(g) = \bar{g}(z_0), \text{ where } \bar{g} \text{ is a u. a. p. extension of } g \in B(Z). \]

In view of (4) the value \(\varphi(g) \) is well defined. It is easy to see that \(\varphi \) is a homomorphism of the ring \(B(Z) \) onto the ring of real numbers. The ring \(B(Z) \) can be treated as a subset of the topological space \(R^Z \) (= the Cartesian product of \(\aleph_0 \) copies of the real line \(R \)). The diagram of \(\varphi \) is an analytical set. In fact, we can write:

\[\{ \langle g, y \rangle : \varphi(g) = y \} = \bigvee_{\bar{g}} \{ \langle g, \bar{g}, y \rangle : \bar{g} \text{ u. a. p. and } \bar{g}|_Z = g \text{ and } \bar{g}(z_0) = y \}, \]

and it is easy to see that the set in the brackets is a Borel subset of the Cartesian product \(B(Z) \times C(R) \times R \), where \(C(R) \) denotes the space of real and continuous functions on \(R \). The analyticity of the diagram of \(\varphi \) implies that \(\varphi \) is a Borel functional, i. e., it is measurable with respect to the field of Borel subsets of \(B(Z) \) (see [2], p. 398).

Now the following theorem of Sierpiński can be directly applied (see [3]; our formulation differs slightly from the original one):

Theorem (Sierpiński). Every Borel homomorphism \(\varphi \) from \(B(N) \) (\(N \) is an arbitrary denumerable set) onto \(R \) is trivial, i. e., it is determined by a point \(n_1 \in N \):

\[\varphi(g) = g(n_1) \text{ for all } g \in B(N). \]

Hence there exists a number \(z_1 \in Z \) such that \(\varphi(g) = \bar{g}(z_0) = \bar{g}(z_1) \) for all \(g \in B(Z) \), which immediately yields a contradiction, since there are u. a. p. functions separating the points \(z_0 \) and \(z_1 \). In this way the proof of the existence of a u. a. p. function \(e \) satisfying (2) is completed.

Remark 1. Theorem 1 remains valid if we replace in its formulation the property \(I_0 \) by the property \(I \) (cf. [1]); \(Z \in I \) means that every bounded and uniformly continuous function on \(Z \) has a u. a. p. extension. In this way we obtain

Theorem 1. If \(Z \in I \) and \(F \) is a finite set of real numbers, then \(Z \sim F \in I \).

Remark 2. In [1] the following conjecture was stated as a part of P 452:

(H) If \(Z \in I \), then the weak closure of \(Z \) is of the Haar measure zero.

The Haar measure and weak closure are understood with respect the so-called Bohr compactification of the real line (cf. [1], p. 24).

By methods similar to those presented above we can easily reduce (H) to the following conjecture:
(C) Every linear, non-negative and Borel functional \(\psi \) defined on \(B(N) \) has the form

\[
\psi(g) = \sum_{n \in N} \lambda_n g(n) \quad \text{for all } g \in B(N),
\]

where \(\lambda_n \geq 0 \) and \(\sum_{n \in N} \lambda_n < \infty \).

It is easy to see that (C) implies the theorem of Sierpiński. The author is rather inclined to believe that (C) holds.

Remark 3. Finally, let us mention that every functional \(\psi \) (see (C)) can be written in the integral form

\[
\psi(g) = \int_N g(n) \mathrm{d}\mu \quad \text{for } g \in B(N),
\]

where \(\mu \) is a finitely additive and non-negative measure defined on the set \(2^N \) of all subsets of \(N \), and the correspondence between \(\psi \) and \(\mu \) is one-to-one. The set \(2^N \) will be considered as a topological space with the product-topology (\(2^N \) is homeomorphic with the Cantor dyadic set). Now we are able to reformulate the conjecture (C):

(C') Every finitely additive, non-negative, Borel measurable measure \(\mu \) on \(2^N \) vanishing on finite sets is identically equal to zero.

REFERENCES

Reçu par la Rédaction le 15. 9. 1963