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PRELIMINARIES AND SY MBOLS

1. This paper presents an application of general considerations
in [9]. Thus we shall omit here all explanation of notions described there.
Nevertheless, all suppositions and conventional symbols are explicitly
mentioned below. The problem and result is ultimately formulated in
section 7.

2. Let # = [2',...,2" | be the variable point in the N-dimensional
Cartesian linear space RY (N =3), |x| = [Z(:cf)2)”2 the wusual norm,
|le—y| the distance from z to yeRY. The (Alexandroff’s) infinity oo is
not included into RY. In particular, A~ (the closure of a set A) does not
contain oo, even for unbounded A.

For any two sets A, B = RY, their distance is o(4, B) = inf{jz—y|:
zed,yeB}; o(x,B) = o({a}, B). For any positive number 0, 64 =
= {x: o(x, A) < 6}.

We consider signed measures u,o,7,... on RY ([1], p. 233). ut
is the positive, u— the negative part of u: p = u*—pu~. The variation
\u| = u++ u is itself a measure. u(RY) is the mass of u, |u|(RY) its abso-
lute mass. g > 0 means that p is a positive measure; |[u| <» means
v—|u| =0. u| A is the trace of u on A: [fdu|A = [ fdu = [ fodp

A

(g4 — characteristic function of A). p =« A means p=p| A.
We will be mainly concerned with the following classes of measu-
res on a compact set F to be described later:

(2.1) T={p:p<cF, u=>0,uF) =1},

(2.2) Tn:{z:r:Z;l;s{af), (@ oy an} < B,

i=1
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where ¢(a) is the unit measure at a, i.e. f}a-(m)da(a) = h(a) for every con-
tinuous (or even semicontinuous) h.

3. For any measures o, we put
1) U@ = [le—y*Vdo,, (0,7) = [U"dr, |o|* = (o,0),
32)  Ti@) = [lo—yliVdr,, (z,0) = [Usdo, [} = (z,7)s,

where the index 0 indicates that for z — y the integrand is to be re-
placed by 0. All these expressions are to be used only if well-defined.
U? is the Newton’s potential. The energy |o|? is positive if ¢ = 0 [4]. The
measures with finite energy form a pre-Hilbert space & with the inner pro-
duct (0, 7) [2]. If T ~ &, is non-void, there exists [4] an equelibrium measure
neT characterized by

(3.3) U'(x) = [nl* < ||jul> (zeF, uel);

the first equality may fail in some points of F, but this is never the case
for F as in section 4.

Formulae (3.2) are destined for discrete measures, but a continuos
one is by no way excluded. We will use them 1° for o, zeT,, 2° for U°
continuous, reT, and 3° for o,7e&. It is immediately seen that, for 2°
and 3% (o, 1), = (o, 7), and in all cases mentioned (o, T)p 78 @ symmelric
bilinear form. From the above cases, we can extend it linearly. To facili-
tate the lecture, we write down some explanation formulae:

la—b>~Y if a£b,

(3.4) (e(a), e(b))o = it a=b

Izl = 22%"2[&;—@13“\' (veT, defined by (2.2)),

ik
le—gllo = Ilell— 2 (g, 7)o+ lloll

o= i[r[[ﬁ—QZ n~tU%a;)+ [lgl* (U7 continuous, v as above).
T

4. From now on, we fix N = 3 to simplify some formulations. Let
F be a surface dividing R* in two domains, a bounded one, denoted by D,
and an unbounded one, denoted by D,. Let f(z) be a real-valued con-
tinuous function on ¥ and u(z, f) the solution of Dirichlet's problem that
satisfies the following conditions: % is continuous in R3u {oc}, harmonic in
DoD,,, u(x,f) = f(z) (xeF), u(co,f) = 0. We assume all points on F
to be regular with respect to both D and D, i. e., we assume the existence
of such u(z, f) for any continuous f. On F, we use the topology induced
from R?; e.g., dF, in the proof of Lemma 4 is a curve.
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THE EXTREMAL POINTS METHOD

5. This method, conceived by Leja ([12], [13] and [14], p. 458),
was worked out for the three-dimensional case by Goérski [6]. We summarize
his results in this section (we replaced f by —f in Goérski’s formulae in
order to set off the parallelism to the plane case).

Take a measure yu,eT, (2.2) such that

(61) I L L, ) <L(m,H < -

—lle+2 [fdr  (zeTw).

The system of points a; for v = u, will be denoted by

(5°2) {gm ceney Op l} = {%,n_n ceey Cn_1n_ l}

and called the (n—1)-th extremal system of F. It may not be unique;
we think, for any n, a concrete extremal system (thus, a concrete u,)
to be chosen.

Put else

(5.3) I, f) =P +2 [fdp  (neé,pu < F).

Take any sequence of indices n (k) — co. Then, as proved by Gérski,
we have
LEMMA 1. There exists a sequence k(i) and a measure u* < F such that

(5.4) Mngreiy) = wty I n(k(i)) t.d
where ((2.1), (5.3))

df
I=I("f)<I(p,f) (uel).
Denoting by b a suitable constant, there exists a set F, such that
(5.6) U (@) —>fl@)—b (x—a'eF,cF).

F, is always of positive capacity [2], but it may not equal F.

6. We ask now for conditions that ensure F, = F. A necessary one
is of course the continuity of f itself.

Let us now adapt a concept and results of Siciak [17], due to him
in the case N = 2, for somewhat more general f.

Df,. We call f solvable and write feR; if it can be represented as
f(z) = U™?(x)+b (xeF), where ¢ is a measure in 7' (2.1) with continu-
ous potential, and b is a constant number.

It is then immediate that (see section 4)

(6.1) u(@,f) = U "(@)+b (zeD).

Df,. We call f solvable and write feR, if it is the trace on F of
a function f* continuous, subharmonic and bounded in R? harmonic
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in the closed exterior of some ball B > F and satisfying the follow-
ing equation
(6.2) [ [ (@ffjom)as = — 4=,

on
the differentiation being in the exterior normal direction to dB and the
integration — with respect to the area on dB.

The definitions above are equivalent. Indeed, let feR,, then f*=
= U™"+ b satisfies Df,, the integral on the left-hand side of (6.2) being
equal to —4mp(F) ([8], p. 43). Conversely, if feR,, then ([15] and [16])
[*(x) = U ¥(x)+H (x) with y ¢ B, >0 and H () harmonic in R?. More-
over, by (6.2), (B) = 1. Being bounded in R? (because of U~ "(co) = 0),
H is constant ([11], p. 282). Now, by the theory of balayage [3] there
exists a positive measure yp ¢ F with U'F(2) = U¥(z) on F (all points
of F being regular) and yz(F) = a < 1 (see e. g. the argument concer-
ning (17.2) in [9], p. 272). Then by (3.3) we have
(6.3) ¢ =ypt+(l—a)nel.

This measure satisties Df,, since U'F and [’ are continuous by the
regularity of F (section 4; see e.g. [3]).

Df;. We call f solvable and write feR, if for some sequences n(k),
k(7) the measure x* from Lemma 1 has a continunous potential and flz)=
= U""(2)+b (xeF, b a constant).

If feR,, then feR,, of course. Conversely, if feR,, then for uel

(64)  I(u,f) = wlP+2 [(U-"+b)dp = [lu—gl2— |2+ 2b.

Thus the unique measure minimizing it in 7' is ¢. Hence u* = @
(see Lemma 1) and Df, is satisfied.

So R, = R, = Ry and, from now on, we write simply R instead
of B, R, or Ry. For feR, u* = ¢ independently of {n(k)} — hence the
whole sequence u, is convergent, viz.,

(6.5) My =@ (0 —o00,felR).

So Fy = F by (5.6), (6.1) and Df,.

The term solvable is originally motivated by a definition related
to our Df,, [17]. But a more general motivation may be given: for sol-
vable f, the Dirichlet’s problem is solvable by the Gauss’s variational
method, i.e., by minimizing w242 [fdu for ped. Nevertheless, the
class R; of Gauss solvable continuous functions is larger than R: one
can show by (6.4) that a definition of Ry is obtained from Df . by drop-
ping the condition g7 there and setting b = 0 (since a b+ 0 ean be ab-
sorbed by the potential, see (3.3)). So a problem suggests itself:

P 457. Give a generalization or a variant of the extremal points method
for which the related class Ry is identical with R;.
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We give now some information concerning the class R.

LeMMA 2. The class R is convex, i.e., if, for i =1,...,n, fieR and
a; are positive numbers with Ya; = 1, then Na;fieR.

This is obvious from Df,.

In particular, for feR and 0 < 21 <1 we have if = Af+(1—21)0¢R,
since by Df, with ¢ = n we have 0eRR.

LeEMMA 3. Let F be a C*surface and let f, satisfy a Lipschitz condi-
tion (7.1). Then

1° for some Ay > 0, f = Ayfye kR,

2° for this f, u(x, f) and consequently U!(x) from (6.1) satisfies a Lip-
schitz condition

(6.6) | U+ h)++U"(x), < plh| (reR?, heR?).

The last inequality is given in [5], p. 213, for xrel'. But g,(x) =
= U%(¢+h)—U"(x) (h constant) is harmonic when x,x+heD, and
continuous in the closure of this set. Thus the generalization of (6.6) to
x,x+heD” is immediate, and so is that to D_, since g,(cc) = 0. Now,
if a funection satisfies a Lipschitz condition in D— and in D_, it does
also in D-vD_ = R* The first part of the lemma is proved by Gorski
[7]. Both authors admit more general (Liapounoff’s) F.

LEMMA 4. If FeCly, ¢ c F and ¢ satisfies (6.6), then

ey
2r

(6.7) g (B)] <

for any Borel set E c F of area |H|.
Remark. We do not suppose @7 in this lemma.

Proof. Let for any & > 0 and any measure g, u; be the h-average,
viz., the measure of density

un(@) L u(B(2, h)/|B(z, b)),

B(xz, h) being the ball of centre # and radius & and | | denoting volume.
It is well known that U""(x) = [ U”(y)dV/|B(x,h)|, where dV deno-
B(Z,h)

tes the volume element — this is immediate by Fubini’s Theorem ([15],
§ 6.23, and [18]). So U" being continuous, U eC* and Uk e¢C?, where
@ = (@a)n. Now, (6.6) implies |U"h(x)— U™ (y)| < ple—y|.

Let x, be any point of F. Take the coordinate system (t,,?,, ;) with
x, as its origin and {;-axis normal to F. There exists an * > 0 such that
for any re(0,r*> the maximal connected part F, = F,(x,) of F, con-
taining «, and lying within the cylinder Z: #;+#; < r, can be represented
by t; = ¢(t,,%,)eC', and the domain F consisting of points in Z with
gty t)— 0 < t3 < g(ty,1,)+ 0 is disjoint with F—F, for small é > 0.
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The boundary of F is piecewise smooth. Thus ([8], p. 155-156)

A U™
an

o B = |4 as| <L jom
47 4in
iE -

(differentiation in the normal direction, integration with respect to area;
|0E| means area). But |p|(dE) = |¢|(0F,) = 0, since [jg|* is finite and
0F, has the capacity null ([9], lemma 8), so ¢u.(E) = ¢(E) (h— 0)
and |¢(#,)| = |p()| < (p/4=)|0B|. Setting 6 — 0 we obtain |p(F,)| <
< (p[2%)|F,|. Now, {F.(x,):r <r*,zycF} is a base for the class of
Borel sets on F, so the inequality obtained generalizes to (6.7) by a
routine argument.

THE RESULT

7. Our aim is to estimate the order of convergence of Leja-Gorski
method under assumptions of Lemma 3. Then (see the remark following
Lemma 2) with any Ae(0, 4>, Af =foeR and wu(z,f,) = %(2,f)/A. Thus
it is sufficient to give the order of convergence for a Lipschitzian solvable f.

THEOREM. Let FeC?, feR and let f satisfy a Lipschitz condition on F':

(7.1) [f (@) —f(@:)| < ¢lwy—@y| (@1, 22¢F; ¢ a constant).
Then (6.5) is valid, w(z,f) = U %(x)+b(xeD) and
(7.2) U*(2) = U (@)+g(@), |g(2) <M(2)0(n") (zeDoD,),

M (x) being a continuous function of x alone in DoD,,.
If, moreover, feC? on F, we have

(7.3) b=0,+0(n""), by = luali+ [fdua,
where O is the Landaw symbol.

For symbols used, see section 4 and section 6 Dfl, (5.1-2), (3.2),
and (2.2).

Our thanks are due to Mr. J. Siciak, whose suggestion to use the class

R in an earlier paper helped us to eliminate some unessential devices we
needed when working immediately with an arbitrary smooth f.

PROOF OF THE THEOREM

8. Energy estimation. Let u;, be the measure of mass 1/n spread
uniformly over the sphere 0B;, B; = {z: |[z—e| <n™'?} (i =0,.
n—1) (5.2). For zeB; (2¢Bj), l(y) = 1/|lx—y| is superharmonic (har-
monice) for yeB;, hence

(81)  U'(@) = [Uy)dys <l(e)/n = UCI™(@) = 1/n|z—e
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((3.1), (2.2)) with a strong inequality only for zeB; (observe the conti-
nuity on @B;). Thus

[panll* = n-3'2,
(Winy Yin) < _J‘U‘(ci)mdwkn = J-Uw‘“'ds(e,;)]ﬂ < (5(6.’:]/”” a(gi)/n)s

and for y, = Z‘ Yin We obtain

(8.2) lpallt = > Wins i) = D + 3 < Il +0-2
1,k

ik i=k
On the other hand, U® satisfies, by Lemma 3, a Lipschitz condition —
in particular, |U’(z)—U®(e;)] < ple—e), thus

(8:3)  |(g, yun)— (95 e(ea) n| = | [(U(@)—U®(e) dpin

Applying (6.4) to generalize I(u,f) to u ¢ F, we obtain by (8.2-3)
and by Lemma 1

(8.4)  I(yn,f) = lipall+2 [(U~"+b)dy,
< ltalle+2 [(U™*+B)dpu+ A+ p)n 2 = Li+... < I+ (14p)n'?,

< pn—mn-—l_

80 by (6.4), Lemma 1 and by p* = ¢,
(8.5) l¥n— @l = O(n-112).

9. Heuristical preparation. The ultimate move is in applying theorem
VI from [9] or its simpler version (theorem VII) which asserts that
[¢]® < ¢|lo]|*, where ¢ depends on the bound for density of ¢ ¢ F and
[ ]is a specific norm such that |U°(z)| < [o¢]M (2) (¢¢F). So [y,—¢] =
= 0(n~'°) would follow from (8.5). But y,— ¢ neither lies on ¥ nor any
surrogate of its density with respect to F is known to be bounded. Hence,
we cannot use the theorem mentioned, but rather its proof with suitable
changes.

We will follow the lines of section 17 and a part of section 13 in
[9]. Some points explained there will be only sketched here. To avoid geome-
trical complications (in proving that (S—é08)eL for § eL; notation
of [9]) we change to another norm (11.2), somewhat differing from [ ]
but giving the same effect on potentials.

q
10. Regular parameters. Take a partition F — () F; (with F; ~ F,c
7=1

< 0F;~0Fy, for i + k), where any F; can be repreéented by a “regular
parametrization” :

(10.1) Fy: ¢ = gi(u,v)  ([u,0]eQ = <0,1>x<0,1))
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with the following properties: 1° ¢;e(C? in some open domain containing
Q and maps it into F, 2° there exists a number ¢ > 0 such that

(10.2) 0(A;v0, Aj(vo+h)) = Fh (0 < vy <wv+h <1),

where, for any fixed v, A;v denotes the arcx = ¢;(u,v) (ue0,1)),
3° the same holds when the parts of the variables u, v are interchanged.
Together with the boundedness of derivatives, this implies

(10.3) 0, <@ (A)[/|A] < b5, O, <I|p(S)|/I8 <0 (j=1,...,m),

with some positive constants 6,, 0,, for any smooth arc 4 = @ (bars
denote length) and any domain § < @ with piecewise smooth boundary
(bars denote area).

The possibility of the construction above follows by triangulating
regularly F and dividing each “triangle” in 4 “quadrilaterals” with
C2-sides, so small as to project on a tangent plane under small angles;
then a one-to-one C*-mapping of this projection onto @ enables us to

define ¢; with the required properties.
n—1

11. The norm [ ]*. Put F* = Fou [ 0B; (section 8) and, generally,

i=0
for any set £ < F let E* consist of points of £ and of dB;’s projecting
themselves onto E:

= {zeF*: o(x, F) = |w—a'|, &' e E}.

Observe that if #~V? <r, = minimal radius of curvature of F,
then to any xeF* there corresponds only one projection a’eF. We limit
ourselves to such values of n. For any § < @, abbreviate

(11.1) 8; = g;(8).
Put now, for ¢ = F*,
(11.2) [¢]* = sup sup |o(S7)],
i SeA
where A denotes the class of all axial rectangles contained in ¢. Lemma 7

of [9] holds with [¢]* instead of [o¢], since we used essentially [ ]* in its
proof:

(11.3) |U () <[o]*M(x) (w¢F*,0c < F, M(x) continuous).
12. We assert that
(12.1) [tn—9] = O(n~'°).

Assume, on the contrary, that there exist sequences n; and i, S"s/l,
such that n; - oo and

(12.2) +(p—pny) (85) = 6 (cknil® — o0 (k — o0)).
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We can assume that the sign in (12.2) is always +. Indeed, let for
a k the minus sign occur. Extend the sides of 8 to divide @ in 9 rectan-
gles. Denote their images under ¢;, by Fy.,, ..., Fy.q, Fy o = 8% . The

common boundary points of any F,’s are to be counted to (any) one of
q+8

them only. The entire mass being null, D (@— un) (F;) = ¢, so for an
i=1

@ =i’ we have (p—p,)(Fy) > ck/(q+8). Thus, taking F, for St and
diminishing (¢+8) times ¢, we have (12.2) with plus sign. With this
new ci, the first minus in (12.2) can be dropped.

Moreover, the range of 4, being {1,..., ¢}, we can assume (by pas-
sing to a subsequence) — to simplify the formulae — that =7 (k=
=125

Cut a boundary strip 4% = §* ~ 838" where 6 = n;*; see section 2.
We have (radius of B;) = n;;'/* < 96 (see (10.2)), provided ny is sufficiently
great, thus

(12.3) — i (87) < —pn, (85— 4M)),
P(8)—p"ni 1 <((S*—aYy)  (p* = 6.-(p/27)-4)
(Lemma 4 and (10.3)). Put
(12.4) On = ¢ — .
By the foregoing inequalities, we have
(12.5) aﬂk((Sk——Ak)}'} =y gnl® =gn®—p* > oo (k- o).
But 8 —A*eA, so for any k we have

s df
(12.6) my, = supsupa,, ((8,)*) = ¢.
i Sea

As easily seen, g, ((8;)*) is a continuous function of SeA, provided
ny is great enoygh. So there exists a C*< A and an i (depending on k) with
on ((0)") = mu. ‘

Now, let A* denote a boundary strip in C*:

(12.7) A* = C*~80C*, & = mp'lh,

and put 4 = A7". Observe that o, (4) >0 — otherwise o, ((CF— 4%)2) >
> my;, while (C"'——A")ezl — hence (see (12.4) and (6.7))

Yu(4) <p(4) = ¢(4F) < p*-dmi ",
Thus, for great Fk,
(12.8) |0 ((CF— 4%)7) > 3.

13. In what follows we will denote some sets which, in our present
considerations, play the role of S, K(m,»), E, A from [9], sections 14,

Colloquium Mathematicum XII 4
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17 (as to A, see (12.7)) and the measures replacing », a, by the same
symbols. Thus, the symbols mentioned have a new meaning from now on.
We put

(13.1) v =0 = ¢+, S.=0.
Let K be now the following class of measures on F*:
(13.2) K = K(mg,») = {o:0 = F*, |o| <v,0(F*) =0, 0(8,) = my}.

» has a continuous potential (since y, and ¢ have). K (my,») is com-
pact (by [1], IIL. 2, see [9], section 14) and |o|* continuous in it ([9],
Lemma 2), s0 a minimal measure aeK exists with [ja|? < ||lo* (seK), in
particular

(13.3) llonll* = llal.

We show, as in the proof of theorem II [9] that we may suppose
a=0o0n 8,.

Form the set E = {z:p(z, F) = |z—a'| < 2n; "% x'eS,~F}. Pub
P = JE. Then P separates S. from F*—§8_ (provided » is great enough,
for the argument see [9], section 17). Moreover, with ¢ from (10.2) we
have

(13.4) o(8,—A,P) > . o' L 1ong e,
provided ny is so great as to make F sufficiently flat in the 24’-neighbour-
hood of any point of ¥. The elementary proof of this fact is based on the
observation that by (12.7) and (10.2) we have o((S, ~F)—4,d(8, ~F)) >
> 2§’; we omit the details.

Clearly, by the definition of CF (after (12.6)) and by (12.8), (13.1-2),
(13.5) a(d) < »(A) < Imy.

Take a partition

a
8 nF—A=UF,
i=1

where #; are mutually disjoint and each #; is contained in a ball

B, = {w:|w— ;| < 10’} (weF;). So for & = {w:lw—a;| > '} we have

0B; = E~ (since & <1). We can (and do) suppose that ¢ <¢ (6 )y =
en'® (see [9], §17). Put (see section 2)

@p=0ald, g=alF (GH=1,...,4).

Introducing the measures f;, obtained by balaying «; onto P v F*—F
as in [9] (17.2-4) and repeating the subsequent considerations, we obtain
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By (13.3), (12.4), (8.5) and (12.6), this implies O (nj ') = ¢'ni; % (cy)2,
0 n*0(ni'?) = ¢’ (exnil®)2 — oo by (12.5), which gives the desired con-

tradiction. So (12.1) is proved and (7.2) follows from (11.3).

14. It we want to calculate b, we may integrate the equality in Df,
(section 6) with respect to ¢, thus obtaining

b= liplt+ [fdp = I— [ fag.

The approximate formula will be (see (5.1))

b by = |uals+ [fdp, = I,— [fap,.

Since (Lemma 1 with u* = ¢, (6.5)) I, <I<I(u,f) for all u of finite
energy (taking (6.4) as the definition), in particular, for u = y,, we have,
by (8.4), I <IL,+(1+pm2 <I+(1+4p)n—12. But in order to esti-
mate [fdu,— [fdp, we need second derivatives of f (with respect to local
coordinates on F). Applying then the proof of Lemma 7 [9] (simply sub-
stituting there our f, expressed as a function of u, v, for f'(u, v)), we obtain

| [Fa(u—o)| < [ —o1* M,

where ) depends on f only. Thus, by (12.1), b = b, -0 (n" ). This com-
pletes the proof of our theorem.

15. The derivatives may be obtained by differentiation of the inte-
grand, and we have the convergence estimation (see (6.1))

gradu(z, f)—grad U= (x)| < [p,—@]* M, (z)
= 0(n %M, () (zeDuD,),

where M, (x) is a continuous function. The proof runs in full analogy
to that of Lemma 7 [9]. Similar results hold for higher derivatives. Observe
that in questions concerning derivatives — thus in many applications —
the constant b disappears, so the additional assumption feC? is not ne-
cessary there,

GENERALIZATION T0 HIGHER DIMENSIONS

16. The extremal points method will do in the N-dimensional space
(& = 4) as well. All basic expressions are given in sections 2-3 just for
general N. Gorski’s results [6, 7] generalize with his own proofs, and
the whole section 6 is valid — with the obvious change from 2- and 3-
dimensional sets to the N —1 and N-dimensional ones, in this and sub-
sequent sections. In sections 7-15 (in particular, in the theorem) the
class C* is to be replaced by ¢V~ and 2~ by »n~"*-1_ The balls B;
(section 8) change now their radii to n="™-", Additional hints and some
explanation may be found in [9], section 20.
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17. Thus, it may seem that the convergence of the extremal points
method becomes the worse the higher is the dimension N. But we have
to remember that with increasing N all numerical methods become neces-
sarily more elaborate, since to cover, say, F by a sequence of ¢ nets,
where &, = O(k~1), we need n; = O (k" ') points for the k-th net. In par-
ticular, if an extremal points system has to be such a net (in the average
sense), it has to consist of n, = O(k" ') points. When referred to k, the
order of convergence of the extremal points method is thus 0 (k-V21logk)
on the plane [10], O(k~'3) in RY (N = 3).
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