RELATIVE PROCESSES
WITH CONTINUOUS DISTRIBUTION FUNCTIONS

BY
K. URBANIK (WROCŁAW)

1. Introduction. Let \(E \) be a Lebesgue measurable subset of the positive half-line. By \(|E| \) we shall denote the Lebesgue measure of \(E \). The limits

\[
|E|_R = \lim_{T \to \infty} \frac{1}{T} |E \cap [0, T)|, \quad |E|_R = \lim_{T \to \infty} \frac{1}{T} |E \cap [0, T)|
\]

are called the lower relative measure of \(E \) and the upper relative measure of \(E \) respectively. If \(|E|_R = |E|_R \), the set \(E \) is said to be relatively measurable; its lower and upper relative measures are then called simply relative measures and denoted by \(|E|_R \). Obviously, the complement \(E' \) of a relatively measurable set \(E \) is also relatively measurable and \(|E'|_R = 1 - |E|_R \). Moreover, if \(E_1 \subset E_2 \) and both \(E_1 \) and \(E_2 \) are relatively measurable, then the difference \(E_2 \setminus E_1 \) is relatively measurable and \(|E_2 \setminus E_1|_R = |E_2|_R - |E_1|_R \). Further, the union of a finite number of disjoint relatively measurable sets \(E_1, E_2, \ldots, E_n \) is again relatively measurable and

\[
\bigcup_{j=1}^{n} E_j|_R = \sum_{j=1}^{n} |E_j|_R.
\]

We say that a system of real-valued functions \(g_1(t), g_2(t), \ldots, g_k(t) \) defined on the positive half-line is relatively measurable, if for all systems \(x_1, x_2, \ldots, x_k \) of real numbers the sets \(\bigcap_{j=1}^{k} \{t: g_j(t) < x_j\} \) are relatively measurable.

For every interval \(I = [a, b] \) and for every function \(f \) we shall use the following notation: \(f(I) = f(b) - f(a) \), \(I + t = \{u + t: u \in I\} \).

We say that a function \(f(t) \) is a relative process with independent increments, if for every positive integer \(k \) and for every system \(I_1, I_2, \ldots, I_k \) of disjoint intervals the system of functions \(g_j(t) = f(I_j + t) (j = 1, 2, \ldots, k) \) is relatively measurable,

\[
(1) \quad \bigcap_{j=1}^{k} \{t: f(I_j + t) < x_j\} |_R = \prod_{j=1}^{k} \{t: f(I_j + t) < x_j\} |_R
\]
for each x_1, x_2, \ldots, x_k and

\begin{equation}
F(I, x) = |\{t: f(I+t) < x\}|_R
\end{equation}

for every interval I is a probability distribution function, i.e. is a monotone non-decreasing function continuous on the left, with $F(I, -\infty) = 0$ and $F(I, \infty) = 1$. The concept of relative processes has been proposed by H. Steinhaus (see [12], [13]). It should be noted that it suffices to require condition (1) for systems of disjoint intervals I_1, I_2, \ldots, I_k such that the closed intervals \bar{I}_j and \bar{I}_{j+1} ($j = 1, 2, \ldots, k-1$) have a common point.

The following non-effective existence theorem for relative processes with independent increments was proved in [13].

Let $f(t, \omega)$ be a measurable separable homogeneous stochastic process with independent increments. Then almost all its realizations $f(t, \omega_0)$ are relative processes with independent increments and

\begin{equation}
|\{t: f(I+t, \omega_0) < x\}|_R = \Pr\{\omega: f(I, \omega) < x\}.
\end{equation}

Some effective examples of Poisson relative processes, i.e. relative processes with independent increments having Poisson distribution were given in [12]. An example of a Gaussian relative process was given in [14]. The aim of the present paper is to give a combinatorial construction of relative processes with independent increments having continuous distribution functions (2). We shall first discuss some simple properties of distribution functions associated with a relative process, which enable us to formulate the main result of this paper. We note that a similar problem of arithmetical modelling of sequences of random variables was considered by several authors. For a complete treatment of this subject the reader is referred to the paper [10] by A. G. Postnikov, where further references to the literature can be found.

2. Distribution functions associated with relative processes. It is very easy to see that for every relative process the equation $F(I_1, x) = F(I_2, x)$ holds whenever $|I_1| = |I_2|$. This fact permits us to introduce the notation $F_{\{I\}}(x) = F(I, x)$, which is more convenient for our purpose. Thus to every relative process with independent increments there corresponds a one-parameter family $\{F_{\{I\}}\}_{t>0}$ of distribution functions completely describing relative measures (1).

Theorem 1. The family $\{F_{\{I\}}\}_{t>0}$ associated with a relative process with independent increments is a one-parameter semi-group under convolution, i.e. $F_{t_1} * F_{t_2} = F_{t_1 + t_2}$.

Proof. Let x be an arbitrary continuity point of the distribution function $F_{t_1} * F_{t_2}$. For any positive number ε we can find a system
$x_1 < x_2 < \ldots < x_n$ of real numbers such that

(4) \[\sum_{j=1}^{n-1} F_{t_1}(x-x_j)(F_{t_2}(x_{j+1})-F_{t_2}(x_j)) \leq F_{t_1} * F_{t_2}(x) + \frac{\varepsilon}{3}, \]

(5) \[\sum_{j=1}^{n-1} F_{t_1}(x-x_{j+1})(F_{t_2}(x_{j+1})-F_{t_2}(x_j)) \geq F_{t_1} * F_{t_2}(x) - \varepsilon, \]

(6) \[F_{t_2}(x_1) \leq \frac{\varepsilon}{3} \quad \text{and} \quad 1 - F_{t_2}(x_n) \leq \frac{\varepsilon}{3}. \]

Consider the intervals $I_1 = [0, t_1)$, $I_2 = [t_1, t_1 + t_2)$ and $(I_3 = [0, t_1 + t_2)$. Put

\[A_r(x) = \{ t : f(I_r + t) < x \} \quad (r = 1, 2, 3). \]

Of course,

(7) \[|A_1(x)|_R = F_{t_1}(x), \quad |A_2(x)|_R = F_{t_2}(x), \quad |A_3(x)|_R = F_{t_1 + t_2}(x). \]

Since $f(I_3 + t) = f(I_1 + t) + f(I_2 + t)$, the set $A_3(x)$ is contained in the union of disjoint relatively measurable sets

\[A_3(x) \subset A_3(x_1) \cup A_3(x_n) \cup \bigcup_{j=1}^{n-1} A_1(x-x_j) \cup (A_2(x_{j+1}) \setminus A_2(x_j)) \]

and contains the union of disjoint relatively measurable sets

\[A_3(x) \supset \bigcup_{j=1}^{n-1} A_1(x-x_{j+1}) \cup (A_2(x_{j+1}) \setminus A_2(x_j)). \]

Hence, by virtue of (1), (2) and (7), we get the inequalities

\[F_{t_1 + t_2}(x) \leq |A_3(x_1)|_R + |A_3'(x_n)|_R + \]

\[+ \sum_{j=1}^{n-1} |A_1(x-x_j) \cup A_2(x_{j+1})|_R - \sum_{j=1}^{n-1} |A_1(x-x_j) \cap A_2(x_j)|_R \]

\[= F_{t_2}(x_1) + 1 - F_{t_2}(x_n) + \sum_{j=1}^{n-1} F_{t_1}(x-x_j)(F_{t_2}(x_{j+1})-F_{t_2}(x_j)), \]

\[F_{t_1 + t_2}(x) \geq \sum_{j=1}^{n-1} |A_1(x-x_{j+1}) \cup (A_2(x_{j+1}) \setminus A_2(x_j))|_R \]

\[= \sum_{j=1}^{n-1} F_{t_1}(x-x_{j+1})(F_{t_2}(x_{j+1})-F_{t_2}(x_j)). \]

By (4) and (6) the first inequality yields

\[F_{t_1 + t_2}(x) \leq F_{t_1} * F_{t_2}(x) + \varepsilon \]

and, by (5), the second one yields

\[F_{t_1 + t_2}(x) \geq F_{t_1} * F_{t_2}(x) - \varepsilon. \]
Since ε can be chosen arbitrarily small, we obtain the equation $F_{t_1 + t_2}(x) = F_{t_1} \ast F_{t_2}(x)$ in all continuity points x of the function $F_{t_1} \ast F_{t_2}$. Hence and from the continuity on the left of both functions $F_{t_1 + t_2}$ and $F_{t_1} \ast F_{t_2}$ we get the desired result. Theorem 1 is thus proved.

It follows from Theorem 1 that the distribution functions F_t associated with a relative process with independent increments are infinitely divisible. Let φ_t be the characteristic function of F_t. Then $\varphi_t(s) \neq 0$ for all positive t and all s. Since, by an argument of Fubini's type, $F_t(x)$ is for each x a Lebesgue measurable function of t, we have, by Theorem 21.4.1 in [6], the equality $\varphi_t(s) = (\varphi_1(s))^t$ ($t > 0$).

Now consider an arbitrary characteristic function φ of an infinitely divisible law. By well-known theorems of Kolmogorov ([8], III, § 4) and Doob ([2], p. 61 and p. 418) there exists a measurable separable homogeneous stochastic process $f(t, \omega)$ such that the characteristic function of the increment $f(I, \omega)$ is equal to $|\varphi(s)|^t$. Thus, by the theorem quoted in Chapter I, there exists a relative process having distribution functions F_t which, by (3), are probability distribution functions of corresponding increments of the stochastic process in question. This yields

Theorem 2. A family $\{\varphi_t\}_{t>0}$ is a family of characteristic functions of distribution functions associated with a relative process with independent increments if and only if $\varphi_t(s) = (\varphi(s))^t$, where φ is a characteristic function of an infinitely divisible law.

We note that the expression $(\varphi(s))^t = \exp t \log \varphi(s)$ is uniquely determined by defining $\log \varphi(s)$ to be continuous and vanish at the origin.

In the sequel a semi-group of distribution functions whose characteristic functions satisfy the condition of Theorem 2 will be called admissible. From Theorem 2 and Lemma 3 in [13] (Formula (30); see also [1], Theorem 1) it follows that either all distribution functions from an admissible semi-group are continuous or all distribution functions are discontinuous. In the first case the distribution functions $F_t(x)$ are continuous as functions of two variables x and $t > 0$.

3. Admissible sequences of integers. Let F be a distribution function. By $S(F)$ we denote the support of F, i.e. the smallest closed subset E such that $\int dF(x) = 1$. In other words, $x \in S(F)$ if and only if $F(x-h) \neq F(x+h)$, where h is arbitrarily small and positive. Denoting by \overline{E} the closure of a set E and by $E_1 + E_2$ the set $\{x+y: x \in E_1, y \in E_2\}$ we have the formula

$$S(F_1 \ast F_2) = S(F_1) + S(F_2)$$

(see [5], p. 275). In what follows we shall use the notation

$$a(F) = \inf\{x: F(x) > 0\}, \quad b(F) = \sup\{x: F(x) < 1\}.$$
LEMMA 1. Every continuous infinitely divisible distribution function \(F \) is strictly increasing in the interval \((a(F), b(F)) \).

Proof. The characteristic function of an infinitely divisible distribution function \(F \) is given by the Lévy-Khintchine formula

\[
\varphi(s) = \exp \left\{ i\gamma s + \int_{-\infty}^{\infty} \left(e^{ius} - 1 - \frac{ius}{1 + u^2} \right) \frac{1 + u^2}{u^2} \, dG(u) \right\},
\]

where \(\gamma \) is a real constant and \(G \) is a monotone non-decreasing bounded function with \(G(-\infty) = 0 \) (see [4], p. 76). If the distribution function \(F \) is continuous, then

\[
\int_{-1}^{1} u^{-2} dG(u) = \infty
\]

(see [13] Lemmas 2 and 3 or [1], Theorem 1).

To prove the Lemma it suffices to show that the support of \(F \) is connected. If \(G(0+) - G(0-) > 0 \), then \(F \) contains a Gaussian component and, consequently, by (8), \(S(F) \) is the whole straight line. Therefore suppose that \(G(0+) - G(0-) = 0 \). Then, by (9), we have the inequality \(G(\infty) > 0 \). Consequently, for sufficiently small positive numbers \(\varepsilon \) the integrals

\[
\int_{|u| > \varepsilon} \frac{1 + u^2}{u^2} \, dG(u)
\]

are positive. Moreover, from (9) it follows that there exists a sequence \(\varepsilon_1, \varepsilon_2, \ldots \) \((\varepsilon_n \neq 0, \ n = 1, 2, \ldots) \) tending to 0 such that

\[
\varepsilon_n S(H_n) \quad (n = 1, 2, \ldots),
\]

where the distribution function \(H_n \) is defined by the formula

\[
H_n(x) = e_n^{-1} \int_{-\infty}^{x} \chi_n(u) \frac{1 + u^2}{u^2} \, dG(u),
\]

\(\chi_n \) is the indicator of the set \(\{u: |u| > \frac{1}{2} |\varepsilon_n| \} \) and

\[
e_n = \int_{-\infty}^{\infty} \chi_n(u) \frac{1 + u^2}{u^2} \, dG(u) > 0.
\]

Consider a compound Poisson distribution function

\[
F_n = e^{-e_n} \sum_{k=0}^{\infty} \frac{c_n^k}{k!} H_n^k \quad (n = 1, 2, \ldots),
\]
where $H^*(x) = 0$, if $x \leq 0$, $H^*(x) = 1$, if $x > 0$ and $H^{(k+1)} = H^* \ast H$.

Since

$$S(F_n) = \bigcup_{k=0}^{\infty} S(H^*_n)$$

([5], p. 277), we infer, by virtue of (8), that $S(F_n)$ is the least closed additive semi-group of real numbers containing 0 and $S(H_n)$. Hence and from (10) it follows that $S(F_n)$ contains an $|\varepsilon_n|$-net. Let \tilde{F}_n be a distribution function with the characteristic function

$$\psi_n(s) = \exp \left\{ i(\gamma + \gamma_n)s + \int_{-1/2|\varepsilon_n|}^{1/2|\varepsilon_n|} \left(e^{ius} - 1 - \frac{ius}{1 + u^2} \right) \frac{1 + u^2}{u^2} dG(u) \right\},$$

where

$$\gamma_n = -\int_{|u| > 1/2|\varepsilon_n|} u^{-1} dG(u).$$

Since the characteristic function ψ_n of F_n is equal to

$$\exp \left\{ c_n \int_{-\infty}^{\infty} (e^{ius} - 1) dH_n(u) \right\},$$

we have, by (11), the equation $\varphi(s) = \psi_n(s) \psi_n(s)$. Thus $F = F_n \ast \tilde{F}_n$ and, consequently, by (8),

$$S(F) = S(F_n) + S(\tilde{F}_n) \quad (n = 1, 2, \ldots).$$

Since $S(F_n)$ contains an $|\varepsilon_n|$-net, the last formula implies that for any n the support $S(F)$ contains an $|\varepsilon_n|$-net. Thus $S(F)$ is connected, which completes the proof.

Let $\{F_t\}_{t>0}$ be an admissible semi-group of continuous distribution functions. By Lemma 1 each function F_t is strictly increasing in the interval $(a(F_t), b(F_t))$ and, consequently, has an inverse function F_t^{-1} in this interval. Of course, the inverse function F_t^{-1} is continuous in the open interval $(0, 1)$. Let ω_n be the modulus of continuity of the function $F_{1/n}$ on the whole real line and let ω'_n be the modulus of continuity of the function $F_{1/n}$ in the interval $[n^{-2}, 1 - n^{-2}]$ $(n = 2, 3, \ldots)$. It is obvious that we can find a sequence r_2, r_3, \ldots of positive integers satisfying the condition

$$\omega_n(\omega'_n(n^{-1})) = o(n^{-1}) \quad \text{as} \quad n \to \infty.$$

Every such sequence associated with $\{F_t\}_{t>0}$ will be called admissible. It should be noted that for admissible sequences r_2, r_3, \ldots by virtue of the inequality $\omega_n(\omega'_n(h)) \geq h$, the asymptotic relation

$$r_n = o(n^{-1}) \quad \text{as} \quad n \to \infty$$

holds.
As an example we shall present admissible sequences associated with semigroups of symmetric stable distributions. Consider a semi-group of distribution functions F_t with characteristic functions

$$\varphi_t(s) = \exp(-t|s|^\alpha),$$

where α is a constant satisfying the inequality $0 < \alpha \leq 2$. Of course, for $\alpha = 2$ we have a semi-group of Gaussian distributions.

We shall prove that each sequence r_2, r_3, \ldots satisfying the condition

$$\lim_{n \to \infty} r_n^{-1} n^{3+2\alpha} = 0 \quad \text{if} \quad \alpha < 2,$$

or the condition

$$\lim_{n \to \infty} r_n^{-1} n^3 < \infty \quad \text{if} \quad \alpha = 2$$

is admissible for a semi-group of symmetric stable laws with exponent α.

It is well-known ([4], p. 183) that each stable probability distribution is absolutely continuous and its density function is bounded on the whole real line. Let $p(\alpha, x)$ be the density function of $F_1(x)$. Since, by (14), $F_t(x) = F_1(x t^{-1/\alpha})$, we have the inequality

$$\omega_n(h) = \omega_1(n^{1/\alpha} h) \leq c_1 n^{1/\alpha} h,$$

where c_1 is a constant. Furthermore, we have the equation for inverse functions $F_t^{-1}(x) = t^{1/\alpha} F_1^{-1}(x)$. Hence we get the formula

$$\omega_n'(h) = n^{-1/\alpha} \sup |F_t^{-1}(y_1) - F_t^{-1}(y_2)|,$$

where the supremum is extended over all y_1, y_2 satisfying the conditions $|y_1 - y_2| \leq h$, $n^{-2} \leq y_1, y_2 \leq 1 - n^{-2}$. Since the distribution F_1 is symmetric and unimodal (see [7], [16]) the above supremum is not greater than $p(\alpha, x_n)^{-1} h$, where x_n is defined by the equation

$$F_1(x_n) = 1 - n^{-2}.$$

Thus

$$\omega_n'(h) \leq n^{-1/\alpha} p(\alpha, x_n)^{-1} h.$$

For $\alpha < 2$ there exists a positive constant c_2 such that

$$\lim_{x \to \infty} \alpha^\alpha (1 - F_1(x)) = c_2$$

(see [9], p. 201 and [4], p. 182). Moreover, from a Wintner's result ([15]; see also [11]) we obtain an asymptotic formula

$$\lim_{x \to \infty} x^{1/\alpha} p(\alpha, x) = \frac{1}{\pi} I'(1+\alpha) \sin \frac{\alpha \pi}{2}.$$
Hence and from (18) and (20) it follows that there exists a constant c_3 such that $p(\alpha, x_n^{-1}) \leq c_3 n^{2+2/\alpha} (\alpha < 2)$. Thus, by (17) and (19),

$$w_n(\omega'_n(h)) \leq c n^{2+2/\alpha} h \quad (\alpha < 2),$$

where c is a constant. Hence it follows that a sequence r_2, r_3, \ldots satisfying (15) is admissible for $\alpha < 2$.

If $\alpha = 2$, then

$$p(2, x) = \frac{1}{2 \sqrt{\pi}} \exp \left(-\frac{x^2}{4} \right)$$

and

$$\lim_{x \to \infty} x(1 - F_1(x)) \exp (x^2/4) = \pi^{-1/2}$$

(see [3], p. 131). Hence and from (18) it follows that $p(2, x_n^{-1}) \leq c_3 x_n^{-1} n^2$, where c_3 is a constant. Thus, by (17) and (19),

$$w_n(\omega'_n(h)) \leq c x_n^{-1} n^2 h \quad (\alpha = 2),$$

where c is a constant. Since $\lim_{n \to \infty} x_n = \infty$, each sequence r_2, r_3, \ldots satisfying (16) is, by the last inequality, admissible.

Lemma 2. Let $\{F_t\}_{t \geq 0}$ be an admissible semi-group of continuous distribution functions and let r_2, r_3, \ldots be an admissible sequence associated with this semi-group. If s_1, s_2, \ldots is a sequence of integers satisfying the condition

$$(21) \quad \lim_{n \to \infty} \frac{s_n}{n} = d > 0,$$

then for every real number x we have the formula

$$\lim_{n \to \infty} \sum_{i=1}^{s_n} F_{i/n} \left(x - \sum_{i=1}^{s_n} F_{i/n}^{-1} \left(\frac{k_i}{r_n+1} \right) \right) (r_n+1)^{-s_n} = F_d(x),$$

where the summation \sum is extended over all systems $k_1, k_2, \ldots, k_{s_n}$ of integers satisfying the condition $1 \leq k_i \leq r_n$ ($i = 1, 2, \ldots, s_n$).

Proof. For brevity we introduce the notation

$$(22) \quad A_n(x) = \sum_{i=1}^{s_n} F_{i/n} \left(x - \sum_{i=1}^{s_n} F_{i/n}^{-1} \left(\frac{k_i}{r_n+1} \right) \right) (r_n+1)^{-s_n}.$$

Let p_n and q_n be integers satisfying the conditions $p_n \geq 1$, $q_n \leq r_n$,

$$(23) \quad \frac{p_n - 1}{r_n + 1} \leq \frac{1}{n^2} \leq \frac{p_n}{r_n + 1}, \quad \frac{q_n + 1}{r_n + 1} \leq 1 - \frac{1}{n^2} < \frac{q_n + 2}{r_n + 1}.$$
Put
\[B_n(x) = \sum_s F_{1/n} \left(x - \sum_{i=1}^{s_n} F^{-1}_{1/n} \left(\frac{k_i}{r_n+1} \right) \right) (r_n+1)^{-s_n}, \]
where the summation \(\sum \) is extended over all systems \(k_1, k_2, \ldots, k_{s_n} \) of integers satisfying the condition \(p_n \leq k_i \leq q_n \) (\(i = 1, 2, \ldots, s_n \)). By a simple reasoning we obtain the inequality
\[|A_n(x) - B_n(x)| \leq \sum_{j=1}^{s_n} \sum_{(j)} F_{1/n} \left(x - \sum_{i=1}^{s_n} F^{-1}_{1/n} \left(\frac{k_i}{r_n+1} \right) \right) (r_n+1)^{-s_n}, \]
where the summation \(\sum_{(j)} \) is running over all systems \(k_1, k_2, \ldots, k_{s_n} \) of integers satisfying the conditions \(1 \leq k_i \leq r_n \) (\(i = 1, 2, \ldots, s_n \)) and \(k_j \neq p_n, p_n+1, \ldots, q_n-1, q_n \). Hence we get the inequality
\[|A_n(x) - B_n(x)| \leq s_n (p_n-1+r_n-q_n) r_n^{-s_n}(r_n+1)^{-s_n} \leq s_n (p_n+r_n-q_n) (r_n+1)^{-1}. \]

Finally, taking into account (13), (21) and (23), we obtain the formula
\[\lim_{n \to \infty} (A_n(x) - B_n(x)) = 0. \]

Consider the expression
\[C_n(x) = \sum_{a_{k_1+1} \ a_{k_2+1} \ \ldots \ \ a_{k_{s_n}+1}} \int \int \ldots \int F_{1/n} \left(x - \sum_{i=1}^{s_n} a_{k_i} \right) dF_{1/n}(x_1) dF_{1/n}(x_2) \ldots dF_{1/n}(x_{s_n}), \]
where
\[a_{k_i} = F^{-1}_{1/n} \left(\frac{k_i}{r_n+1} \right). \]

Since
\[\int_{a_{k_i}}^{a_{k_i+1}} dF_{1/n}(x_i) = \frac{k_i+1}{r_n+1} - \frac{k_i}{r_n+1} = \frac{1}{r_n+1}, \]
the expression (24) can be written in the form
\[B_n(x) = \sum_{a_{k_1+1} \ a_{k_2+1} \ \ldots \ \ a_{k_{s_n}+1}} \int \int \ldots \int F_{1/n} \left(x - \sum_{i=1}^{s_n} a_{k_i} \right) dF_{1/n}(x_1) dF_{1/n}(x_2) \ldots dF_{1/n}(x_{s_n}). \]
Thus
\begin{equation}
(B_n(x) - C_n(x)) \leq \sum \omega_n \left(\sum_{i=1}^{s_n} |a_{k_{i+1}} - a_{k_i}| \right) \int F_{1/n}^{a_{k_{i+1}}} \left(\frac{k_i + 1}{r_n + 1} \right) \leq \omega_n'(r_n^{-1}),
\end{equation}

whenever \(p_n \leq k_i \leq q_n \). Thus, by (21) and by well-known formula \(\omega_n'(m\hbar) \leq m \omega_n'(\hbar) \) \(m = 1, 2, \ldots \), inequality (28) implies
\begin{equation}
(B_n(x) - C_n(x)) \leq s_n \omega_n(\omega_n'(r_n^{-1})) = d_n \omega_n(\omega_n'(r_n^{-1})) + o(1),
\end{equation}
which, by (12), yields
\begin{equation}
\lim_{n \to \infty} (B_n(x) - C_n(x)) = 0.
\end{equation}

Further, from (13), (21), (23), (26) and from the formula
\begin{equation}
F_{(e_{n+1})/n}(x) = F_{1/n}^{a_{e_{n+1}}} = \int \int \ldots \int F_{1/n}^{a_{e_{n+1}}} (x - \sum_{i=1}^{s_n} x_i) dF_{1/n}(x_1) dF_{1/n}(x_2) \ldots dF_{1/n}(x_{s_n})
\end{equation}

with (25) and (29) implies the assertion of the Lemma.

4. A combinatorial construction of relative processes. In this Chapter we shall give an effective combinatorial construction of relative processes with independent increments having continuous distribution functions.

Theorem 3. Let \(\{F_i\}_{i=0} \) be an admissible semi-group of continuous distribution functions and let \(r_2, r_3, \ldots \) be an admissible sequence of integers associated with this semi-group. For every \(n \geq 2 \) let \(\langle k_{1/2}^{(n)}, k_{2/3}^{(n)}, \ldots, k_{r_{n-1}}^{(n)} \rangle \).
j = 1, 2, ..., r_n^m, be a sequence of all ordered r_n-tuples of positive integers not exceeding r_n. Put a_n = r_n^m, b_n = \sum_{s=1}^{n} r_s^{1+r_r} r_{s+1}^{r_{s+1}+r_{s+1}+1} (n \geq 2), b_1 = 0, H(t) = 0, if t < 0 and H(t) = 1 if t \geq 0. Then the function

\[f(t) = \sum_{n=2}^{\infty} \sum_{i=1}^{r_n} \sum_{j=1}^{u_n} \sum_{m=1}^{n r_n^{1+a_n^m+1}} F_{i|j+m}(\frac{b_{n+1}^m}{r_n+1}) \times
\times H\left(t - b_{n+1}^m - \frac{(n-1)r_n a_n + (j-1)r_n + (i-1)}{n}\right) \]

is a relative process with independent increments. Moreover, \{F_t\}_{t \geq 0} is the family of its distribution functions.

Proof. Consider a system of intervals \(I_p = [c_{p-1}, c_p) (p = 1, 2, ..., k) \), where \(c_0 = 0 \). In what follows we assume that the index \(n \) satisfies the conditions \(n \geq 2 \) and \(\min_{1 \leq p < k} |I_p| > 2n^{-1} \). For every such index \(n \) we can define an auxiliary system of intervals

\[I_{pn} = \left[\frac{u_{pn}}{n}, \frac{v_{pn}}{n} \right] (p = 1, 2, ..., k) \]

where \(u_{pn}, v_{pn} \) are integers,

(30) \hspace{1cm} u_{1n} = 0, \hspace{1cm} nc_{p-1} \leq u_{pn} \leq nc_{p-1} + 1, \hspace{1cm} nc_{p-1} - 1 \leq v_{pn} \leq nc_{p} \hspace{1cm} (p = 1, 2, ..., k) \)

and

(31) \hspace{1cm} u_{p+1,n} = v_{pn} + 1 \hspace{1cm} (p = 1, 2, ..., k-1).

Of course, \(I_{pn} \subset I_p \hspace{1cm} (p = 1, 2, ..., k) \) and

(32) \hspace{1cm} \lim_{n \to \infty} |I_{pn}| = |I_p| \hspace{1cm} (p = 1, 2, ..., k).

Moreover, by (31), the distance between two consecutive intervals \(I_{pn} \) and \(I_{p+1,n} \) is equal to \(n^{-1} \).

Let us introduce the notation

\[U(n, m) = \left[b_{n-1} + \frac{(m-1)r_n a_n}{n}, b_{n-1} + \frac{nr_n a_n}{n} \right), \]

where \(m = 1, 2, ..., nr_{n+1} a_{n+1} \) and \(n = 2, 3, ... \). Further, for any system \(y_1, y_2, ..., y_k \) of real numbers we put

(33) \hspace{1cm} A(n, m; y_1, y_2, ..., y_k) = \bigcap_{p=1}^{k} \{t: I_{pn} + t \subset U(n, m), f(I_{pn} + t) \leq y_p\}.

By the definition of the function \(f \) the distance between its consecutive jump points in the interval \(U(n, m) \) is equal to \(n^{-1} \). Put

(34) \hspace{1cm} w_{pn} = v_{pn} - u_{pn} \hspace{1cm} (p = 1, 2, ..., k).
If $I_{pm} + t_0$ is contained in $U(n, m)$, then the interval $I_{pm} + t_0$ contains exactly w_{pn} jump points of the function f. Furthermore, the same jump points belong to every interval $I_{pm} + t$, where t is taken from an interval of the length n^{-1} containing t_0. Thus as $n \to \infty$ we have

$$A(n, m; y_1, y_2, \ldots, y_k) = n^{-1}a(n, m; y_1, y_2, \ldots, y_k) + O(n^{-1})$$

uniformly in m, where $a(n, m; y_1, y_2, \ldots, y_k)$ is the number of all $\sum_{p=1}^{k} w_{pn}$-tuples of consecutive jump points in the interval $U(n, m)$ such that the sum of w_{pn} first jumps is less or equal to y_1, the sum of next w_{2n} jumps is less or equal to y_2 and so on.

Now we shall establish an asymptotic formula for $a(n, m; y_1, y_2, \ldots, y_k)$. The jump points of the function f in the interval $U(n, m)$ are of the form

$$b_{n-1} + \frac{(m-1)r_n a_n + (j-1)r_n + (i-1)}{n} \quad (i = 1, 2, \ldots, r_n; j = 1, 2, \ldots, a_n).$$

We note that the number of $\sum_{p=1}^{k} w_{pn}$-tuples of consecutive jump points in $U(n, m)$ containing at least two jump points with different indices j is not greater than $a_n \sum_{p=1}^{k} w_{pn}$, which is of order $o(r_n a_n)$ uniformly in m as $n \to \infty$. Consequently, the number $a(n, m; y_1, y_2, \ldots, y_k)$ is equal, with an accuracy $o(r_n a_n)$, to the number of all $\sum_{p=1}^{k} w_{pn}$-tuples of consecutive jump points in $U(n, m)$ corresponding to the same index j and satisfying the requirements formulated in the definition of $a(n, m; y_1, y_2, \ldots, y_k)$. In other words, the number $a(n, m; y_1, y_2, \ldots, y_k)$ is equal, with an accuracy $o(r_n a_n)$, to the number of all pairs $\langle j, s \rangle$ $(j = 1, 2, \ldots, a_n; s = 0, 1, \ldots, r_n - \sum_{p=1}^{k} w_{pn})$ for which the following inequalities are true:

$$\sum_{i=\sigma_{p-1,n}+1}^{\sigma_{p,n}} F_{1/n}^{-1}\left(\frac{k_{i+s,j}^{(n)}}{r_{n} + 1}\right) \leq y_p \quad (p = 1, 2, \ldots, k),$$

where

$$\sigma_{0,n} = 0, \quad \sigma_{p,n} = \sum_{q=1}^{p} w_{qn} \quad (p = 1, 2, \ldots, k).$$

Further, the last inequalities are equivalent to the following ones:

$$k_{\sigma_{p-1,n}+1+s,j}^{(n)} \leq (r_n + 1) F_{1/n}\left(y_p - \sum_{i=\sigma_{p-1,n}+2}^{\sigma_{p,n}} F_{1/n}^{-1}\left(\frac{k_{i+s,j}^{(n)}}{r_{n} + 1}\right)\right) \quad (p = 1, 2, \ldots, k).$$
From the definition of \(r_n \)-tuples \(\langle k_{i_1}^{(n)}, k_{i_2}^{(n)}, \ldots, k_{i_{n+1}}^{(n)} \rangle \), by a combinatorial argument, it follows that for any fixed index \(s \) the number of indices \(j \) satisfying (36) is given by the formula
\[
\sum r_n^{r_n - z_{kn}} \prod_{p=1}^k \left((r_n + 1)F_{1/n}(y_p - \sum_{i=2}^{s_{pn}} F_{1/n}^{-1} \left(\frac{d_{pi}}{r_n + 1} \right)) \right),
\]
where the summation is extended over all systems \(d_{pi} \) \((i = z_{p-1,n+2}, \ldots, z_{pn}; p = 1, 2, \ldots, k) \) of integers satisfying the condition \(1 \leq d_{pi} \leq r_n \) and \([x]\) denotes the integral part of \(x \). Setting
\[
(s_{pn} = z_{pn} - z_{p-1,n+1} = w_{pn} - 1 \quad (p = 1, 2, \ldots, k),
\]
we can write the last expression in the form
\[
a_n \prod_{p=1}^k \left(\sum_{(p)} F_{1/n}(y_p - \sum_{i=1}^{s_{pn}} F_{1/n}^{-1} \left(\frac{k_{pi}}{r_n + 1} \right)) (r_n + 1)^{-s_{pn}} \right) + o(a_n),
\]
where the summation \(\sum_{(p)} \) is extended over all systems \(k_{p1}, k_{p2}, \ldots, k_{nsp_n} \) of integers satisfying the condition \(1 \leq k_{pi} \leq r_n \) \((i = 1, 2, \ldots, s_{pn}) \). Moreover, since this expression does not depend on the index \(s \) and \(0 \leq s \leq z_{kn} \), the number of pairs \(\langle j, s \rangle \) satisfying (36) and, consequently, the number \(a(n, m; y_1, y_2, \ldots, y_k) \) are given by the formula
\[
a_n (r_n - z_{kn}) \prod_{p=1}^k \left(\sum_{(p)} F_{1/n}(y_p - \sum_{i=1}^{s_{pn}} F_{1/n}^{-1} \left(\frac{k_{pi}}{r_n + 1} \right)) (r_n + 1)^{-s_{pn}} \right) + o(r_n a_n).
\]

From (32), (34) and (37) it follows that \(\lim_{n \to \infty} s_{pn}/n = |I_p| \) and \(z_{kn} = O(n) \), which, by (13), implies \(z_{kn} = o(r_n) \). Thus, by Lemma 2 and formula (35),
\[
A(n, m; y_1, y_2, \ldots, y_k) = n^{-1}r_n a_n \prod_{p=1}^k F_{1/n}(y_p) + o(n^{-1}r_n a_n)
\]
uniformly in \(m \).

Now consider the set
\[
B_p(n, m; \varepsilon) = \{ t; I_p + t \subset U(n, m), |f(I_p + t) - f(I_{pn} + t)| > \varepsilon \},
\]
where \(\varepsilon \) is a positive number. By (30) we conclude that if the interval \(I_p + t \) is contained in \(U(n, m) \), then the set \((I_p + t) \setminus (I_{pn} + t) \) contains at most two jump points of the function \(f \). Thus the function \(f \) has a saltus of absolute magnitude greater than \(\frac{1}{2} \varepsilon \) in the set \((I_p + t) \setminus (I_{pn} + t) \).
whenever \(t \in B_p(n, m; \varepsilon) \). Since, by (30)

\[
| (I_p + t) \setminus (I_{pn} + t) | \leq 2n^{-1},
\]

we have the inequality

\[(40)\]

\[
| B_p(n, m; \varepsilon) | \leq 2n^{-1} b_p(n, m; \varepsilon),
\]

where \(b_p(n, m; \varepsilon) \) is the number of jumps of the function \(f \) in \(U(n, m) \) of absolute magnitude greater than \(\frac{1}{2} \varepsilon \). In other words, \(b_p(n, m; \varepsilon) \) is equal to the number of integers \(k_{ij}^{(n)} (i = 1, 2, \ldots, r_n; j = 1, 2, \ldots, a_n) \) for which

\[
\left| \frac{k_{ij}^{(n)}}{r_n + 1} \right| > \frac{1}{2} \varepsilon.
\]

Since the last inequality is equivalent to the union of two inequalities

\[
k_{ij}^{(n)} < F_{1/n}(-\frac{1}{2} \varepsilon)(r_n + 1), \quad k_{ij}^{(n)} > F_{1/n}(\frac{1}{2} \varepsilon)(r_n + 1),
\]

we obtain by a simple combinatorial reasoning an estimation

\[
b_p(n, m; \varepsilon) \leq a_n(r_n + 1) \left(1 - F_{1/n}(\frac{1}{2} \varepsilon) + F_{1/n}(-\frac{1}{2} \varepsilon) \right).
\]

Hence, by (40), we get the inequality

\[(41)\]

\[
| B_p(n, m; \varepsilon) | \leq 2n^{-1} a_n(r_n + 1) \left(1 - F_{1/n}(\frac{1}{2} \varepsilon) + F_{1/n}(-\frac{1}{2} \varepsilon) \right).
\]

Further, setting

\[(42)\]

\[
C_p(n, m) = \{ t : I_{pn} + t \subset U(n, m), I_p + t \notin U(n, m) \} \cup
\]

\[
\cup \{ t : I_p + t \subset U(n, m) \} \setminus U(n, m) \cup \{ t : I_p + t \in U(n, m) \}.
\]

we have the inequality

\[(43)\]

\[
| C_p(n, m)| \leq 2n^{-1} + 2 | I_p |.
\]

For every positive number \(\varepsilon \), taking into account (33), (39) and (42), we obtain the inclusions

\[
U(n, m) \setminus \bigcap_{p=1}^k \{ t : f(I_p + t) < x_p \} \subset A(n, m; x_1 + \varepsilon, x_2 + \varepsilon, \ldots, x_k + \varepsilon)
\]

\[
\cup \bigcup_{p=1}^k B_p(n, m; \varepsilon) \cup \bigcup_{p=1}^k C_p(n, m),
\]

\[
A(n, m; x_1 - \varepsilon, x_2 - \varepsilon, \ldots, x_k - \varepsilon) \subset U(n, m) \setminus \bigcap_{p=1}^k \{ t : f(I_p + t) < x_p \} \cup
\]

\[
\cup \bigcup_{p=1}^k B_p(n, m; \varepsilon) \cup \bigcup_{p=1}^k C_p(n, m).
\]
Hence and from (38), (41) and (43) we get the inequalities

\begin{align*}
U(n, m) \cap \bigcap_{p=1}^{k} \{ t : f(I_p + t) < x_p \} & \leq n^{-1}r_n a_n \prod_{p=1}^{k} F_{|I_p|}(x_p + \varepsilon) + \\
& + 2kn^{-1}r_n a_n \left(1 - F_{1/n}(1/2\varepsilon) + F_{1/n}(-1/2\varepsilon) \right) + o(n^{-1}r_n a_n), \\
U(n, m) \cap \bigcap_{p=1}^{k} \{ t : f(I_p + t) < x_p \} & \geq n^{-1}r_n a_n \prod_{p=1}^{k} F_{|I_p|}(x_p - \varepsilon) + \\
& + 2kn^{-1}r_n a_n \left(F_{1/n}(1/2\varepsilon) - 1 - F_{1/n}(-1/2\varepsilon) \right) + o(n^{-1}r_n a_n)
\end{align*}

uniformly in \(n \).

By the definition of numbers \(a_n \) and \(b_n \) for every positive number \(T \) there exist integers \(N \) and \(M \) satisfying the conditions

\[b_{N-1} + \frac{Mr_N a_N}{N} \leq T < b_{N-1} + \frac{(M+1)r_N a_N}{N}, \quad 1 \leq M \leq N r_{N+1} a_{N+1}. \]

Since \(b_{N-1} \geq r_N a_N r_{N-1} a_{N-1} \), we have \(N^{-1}r_N a_N = o(b_{N-1}) \) and consequently, \(N^{-1}r_N a_N = o(T) \). Thus

\[T = b_{N-1} + \frac{Mr_N a_N}{N} + o(T). \]

Further, taking into account the decomposition

\[\left(0, b_{N-1} + \frac{Mr_N a_N}{N} \right) = \bigcup_{n=2}^{N-1} \bigcup_{m=1}^{n} U(n, m) \cup \bigcup_{m=1}^{M} U(N, m), \]

the formula \(|U(n, m)| = n^{-1}r_n a_n \) and the limit relation for \(\varepsilon > 0 \),

\[\lim_{n \to \infty} \left(1 - F_{1/n}(1/2\varepsilon) + F_{1/n}(-1/2\varepsilon) \right) = 0, \]

we obtain, by (44) and (45), the inequalities

\[\bigcap_{p=1}^{k} \{ t : f(I_p + t) < x_p \} \cap [0, T] \leq T \prod_{p=1}^{k} F_{|I_p|}(x_p + \varepsilon) + o(T), \]

\[\bigcap_{p=1}^{k} \{ t : f(I_p + t) < x_p \} \cap [0, T] \geq T \prod_{p=1}^{k} F_{|I_p|}(x_p - \varepsilon) + o(T). \]

Hence we get the formulas

\[\bigcap_{p=1}^{k} \{ t : f(I_p + t) < x_p \} \wedge R \leq \prod_{p=1}^{k} F_{|I_p|}(x_p + \varepsilon), \]

\[\bigcap_{p=1}^{k} \{ t : f(I_p + t) < x_p \} \wedge R \geq \prod_{p=1}^{k} F_{|I_p|}(x_p - \varepsilon), \]
which, by virtue of the arbitrariness of ε and the continuity of distribution functions $F_{|I_p|} (p = 1, 2, \ldots, k)$, imply the equality

$$\left| \bigcap_{p=1}^{k} \{ t : f(\xi_p + t) < x_p \} \right|_R = \prod_{p=1}^{k} F_{|I_p|}(x_p).$$

Thus the function f is a relative process with distribution functions \{F_t\}_{t>0}, which completes the proof.

REFERENCES

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES
INSTITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY

Reçu par la Rédaction le 25. 3. 1963