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ON HADAMARD'S INEQUALITY FOR
THE DETERMINANTS OF ORDER NON-DIVISIBLE BY 4

BY

M. WOJTAS (WROCLAW)

Let B, be the family of all real m X n matrices A = [b;] with
—1 < b; <1. The determinant |B,| of a matrix B,eB, will be called
maximal if |B,| > |A| for all AeB,. Maximal determinants obviously
exist. Let us note that all elements of a maximal determinant are equal
to -+1, which simply results from the linearity of |A| in all b;.

It was proved by J. Hadamard (see e.g. [5], p. 418 and 419) that

(1) IB,| < Va".

The matrices B, for which the equality |B,| = Vn* holds, are cal-
led Hadamard matrices; their elements are, on account of the remark
made above, equal to +1 and their rows are mutually orthogonal, i.e.

> byby = 0 for all ¢ # j. It is well known [6] that Hadamard matrices -
k=1

can exist for n» = 2 and » = 0(mod4) only.

J. Sylvester conjectured that Hadamard matrices exist for all
n = 0(mod 4). However, the existence of such matrices has been
proved but for some special cases (see [2] and [3]).

It is clear that inequality (1) can be improved for n == 0(mod4).
There has been known only one inequality of this kind, namely the in-
equality given by Barba [1] for odd »n. He proved that for every such =,

(2) IB,] <V2n—1V(n—1)""',

It is easy to verify that the right-hand side of the last inequality is
asymptotically equal to Ve, /elfﬁ, which gives approximately 0,8581/E.
Estimation (2) is, for all odd n, better than (1) and in view of the examples
for n = 5 (see [7]) and » = 13 (see p. 82 of this paper) this estimation
cannot be improved in general.
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The aim of this paper is to investigate the case n = 2(mod 4). For
this case we derive an estimation stronger than (1) and we show with the
aid of some examples that this estimation is, in general, the best possible.
In particular, we get Barba’s inequality as a consequence of a theorem
used by deriving our estimate. At the end of this paper there are given
examples of maximal determinants for » = 10, 13 and 26. The construc-
tion of determinants of this kind for » s 0(mod 4) is a rather diffi-
cult task and maximal determinants have been known [7]forn = 2,3, 5, 6
and 7 only. _

In the sequel we shall apply the following generalization of a theorem
of J. Hadamard given by E. Fischer (see [4], p. 208 and 209):

Let A, = [ay;] be a real positive definite (1) symmetric n X n matrix.
Let us partition A, into four blocks according to the form

¢ F
A‘ﬂ = FTD ’
where both C and D are square matrices and F* denotes the transposed matriz
of F. Then

(3) |[4,] < €] |D].
Hence, in particular, we get

(4) [4,] Qn a;; .

The equality
[4a] = [C |D|

holds if and only if F is a zero matriz, and the equality

]An| = ﬁ ;i
Tl

holds if and only if A, is a diagonal matriv.

We shall frequently use the following simple remark concerning
a matrix 4,:

The symmetry and positive definiteness of a matrix A, is left un-
changed under operations described by:

(i) add the ¢-th row, multiplied by any numbers, to the last Tow,

and then add the i-th column, multiplied by the same number, to the
last column,

(*) For the definition see [5], pp. 394 and 395.
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(ii) interchange the i-th and j-th row, and then the ¢-th and j-th
column,

(iii) multiply by —1 the i-th row, a.nd then the ¢-th column (32).

Definition 1. A transformation T of a matrix A, which is a com-
position of a number of operations of the form (ii) or (iii) will be called non-
-essential. Two matrices differ non-essentially if each of them may be
transformed into the other by a non-essential transformation.

LeMMA 1. Let
a Ay
Ay M a
A‘:l £ 21 an
Apy Qpg m

be a real positive definite symmetric matriz with elements of first row satis-
fying the condition

(5) 0 < a < min |ay.
2<j<n
Then
(6) |4, < a(m—a)"

Proof. For every i = 2, 3, ..., n, subtract from the i-th row of 4,
the first row multiplied by a,;/a, then subtract from the ¢-th column
the first column multiplied by a;/a = a,;/a. The resulting matrix A4,
is obviously symmetric and positive definite. The determinant of A4, is
equal to |A4,| and the elements of its principal diagonal form the sequence

(iv) a,|m—-—|,...,\m——).
a a

We may therefore apply (4) to yield

(7) 47 = 145] < H (m— &)

The last inequality, together with (5), gives (6).

(2) The desired property of (i) follows from the known condition which is suffi-
cient and necessary for a matrix A, to be positive definite:
lan ... a1i|
be 4 3 @5 -‘> 0 for i=1,2,...,n.

| @iy ... @i |
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COROLLARY 1. If A, satisfies the conditions of lemma 1, then equality
in (6) holds if and only if A, differs non-essentially (see definition 1) from
the matriz

aa a
- am a
Ag =

aa m

Proof. Without loss of generality, we may suppose that all elements
of the first row and the first column of A4, are non-negative.

If (4, = a(m—a)""", then inequality (7) becomes equality. It fol-
lows from this and from (5) that a,; =a (i = 2,3,...,n). Hence the
elements of the principal diagonal of 4, form the sequence

AyM—ay ..., m—da.

Since the determinant of 4, is equal to the product of the elements
of this sequence, it follows from Fischer’s theorem that A, is diagonal.
Hence all elements of A,, except those of the principal diagonal, are
equal to a.

On the other hand, it is easy to verify that |A,| = a(m—a)"".

THEOREM 1. Let A, = [a;] be a real positive definite symmetric matriz
with all diagonal elements equal to m. Then

(8) 4, < (m+na—a)(m—a)™~!
with any real a subject to the condition

(9) 0 < a < minjay|.

; &)

Proof. We rewrite |4, in the form

la @5 ... Q1 m—a 0 ... 0 |

"Gy, M ... @y Uyy M ... Gy
[An| =] [+ ,

‘am Qg oov M| Apy  Opp ... M

Let us denote by |4,| the first determinant of the right-hand side
of this equality and by |4, ,| the determinant obtained by deletion of
both the first row and the first column of |4,|. In terms of this notation
the last equality may be rewritten in the form

(10) [Aal = |4n]+(m—a)|4,_,].

Let us remark that 4, , satisfies all conditions of lemma 1 with the
same a as in the case of 4,.
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Now we shall consider two cases separately: (A) |4,] >0 and
(B) |4.} <0.

Case (A). From |4,| > 0 and from the positive definiteness of A4,
it results that A, is positive definite too (). Hence A, satisfies the con-
ditions of lemma 1 with any a satisfying (9).

On account of inequalities (6) and (10) we get

(11) [4al < a(m—a)" "'+ (m—a): |4,

Case (B). It follows from (10) and from the obvious inequality m > a
that
1An1 ~..<.‘ (1"’_‘ I!I-) !An--l ‘~<- a‘(m_ a‘)""l + (?]’a‘-— a’}' i‘"ln—l‘l .

Thus inequality (11) holds in both cases for all » > 2. The next part of
the proof will be established by induction.

For n = 1 inequality (8) is obviously true. Suppose that it has been
proved for n—1, where n > 2. Then, in view of (11), we have

|4, < a(m—a)' "'+ (m—a){[m+(n—1)-a—al(m—a)"*} =
= (m+na—a)(m—a)"'.

This completes the proof.
CoROLLARY 2. If A, satisfies the condition of theorem 1, then equality
in (8) holds if and only if A, differs non-essentially from the matriz

ma ...a
- a m... a
4, =

a a ...m

Proof. If [4,| = (m+na—a)(m—a)" ', then (11) becomes equality;
hence |4,| = a(m—a)""'. It follows from corollary 1 that A, = TA4,,
where 7' is a non-essential transformation. Since the matrix 4, is obtain-
ed from A4, by putting m in place of the element a in the left upper
corner, A, = TA,. On the other hand, it is easy to verify that |4, =
= (m+na—a)(m—a)" .

From theorem 1 we can easily deduce estimation (2) of G. Barba
for odd n.

It is sufficient to prove (2) for maximal determinants |B,| only.
Then |B,| # 0 and b;; = +1. Denoting by A4, = [a;;] the product Bn-Bf,'
we have '

n
Wl

Ay = 2‘ bikbjk"
k=1

(3) This property follows from the theorem mentioned in footnote (3).
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The matrix 4,, defined as above, is symmetric and positive definite
(see [5], p. 418). Moreover, all elements of its principal diagonal are
equal to n. From the assumption that » is odd it follows that all the
elements a; are odd integers, hence |a;| > 1. According to theorem 1,
putting @« =1 and m = n we have

|Au| = EBRIZ é {2”'_1)('“’_1}?‘“13

which gives the desired inequality (2).

LEMMA 2. Let A, = [a;] be a real positive definite symmetric matriz
with all diagonal elements equal to m. Let moreover A, satisfy the following
condition:

(o) if ay = a; =0, then a; # 0.

Then
(12) |4,| < (m+pa— a)(m—pa—a+na)(m—a)"~*,
where a is an arbitrary number satisfying the inequality

(B) 0 < a < min |ay]
aj;=0

and p = maxp,;, p; denoting the number of elements of the i-th row of A,
equal to zero.

Proof. Let p+1 < n.
We interchange rows and columns in 4, according to (ii) on p. 75
so that

(y) a row with exactly p elements equal to zero becomes the second
row and all the non-vanishing elements of the first row precede
all zero-elements of this row.

This new matrix differs non-essentially from the original matrix
and it will be denoted equally by 4,. It satisfies all assumptions needed
in lemma 2 and its determinant is equal to that of the original matrix.

~ Let us consider the sequence 4,, 4, ,...., 4,,, of matrices where
Ay, for k satisfying p+1 < k << n, results from A;,, by deletion of the
first row and the first column and such a rearrangement of the remaining
rows and columns according to (ii) as to satisfy condition (y). Moreover,
A,y results from A,., by the deletion of the first row and the first
column. It is readily seen that all matrices of this sequence satisfy the
conditions of the lemma with the same a and p.
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If we use the notatiop introduced in the proof of theorem 1, we may
rewrite |4,| in form (10) with |4,| equal to

00 ...0

(13) IA;‘|="""'E ....... :

where C and D are square matrices of order n— P, and p, respectively.
Moreover, no element of the first row of ¢ vanishes.
We shall consider two cases separately: (A) |4, > 0 and (B) |4,] < 0.

Case (A). From |4,| > 0 and from positive definite ness of A, it
results that A, is positive definite and, in consequence, ¢ and D are po-
sitive definite too. '

From lemma 1 we get

(14) 0] < a(m—a)*-"7-1,

From («) and from the form of A, it follows that no element of D
vanishes. This matrix and the number a satisfy the conditions of Theorem 1.
Therefore we can write

(15) D] < (m+p,a—a)(m— a1,
From the last inequality and from (3), (13) and (14) we obtain
(16) |4, < |C]*|D| < a(m+p,a— a)(m— a)*?
and in virtue of p, < p we have
(17) [4;] < a(m+ pa— a)(m— a)*~2.
Finally from (10) and (17) we get
(18) [4,] < a(m+pa—a)(m—a)"*+(m—a) |4,_,|.

Case (B). It follows from the obvious inequality m > a and from
(10) that

[4al < (m—a)-|4,,| < a(m+pa—a)(m—a)"~*+ (m—a)-|4,_,|.

Thus in both cases inequality (18) holds for all n > 2.
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Since the matrices 4,_,, ..., 4,,, satisfy the assumptions of lemma 2
with the same a and p, the inequality

|4i < a(m+pa—a)(m—a)* 4 (m—a)- |4,

similar to (18), is valid for ¥k =n—1,n—2,...,p+1.
From the last inequalities and from (18) we obtain

19) |4, < a(n—p—1)(m+pa—a)(m—ay~*+ (m—a)" P |4,

where

m 0 ... 0
0

iAp+l1 == . Az:
0

It follows from condition (a) of the lemma and from the form of 4, ,
that no element of A, vanishes. On account of theorem 1 we get

|4yl = m|4,| < m(m+pa—a)(m—a)’.

Applying the last inequality to (19) we obtain the desired inequal-
ity (12).

It may be easily verified that (19) is valid for » = p+1 too, which
gives (12) as before.

This completes the proof.

CoROLLARY 3. If A, = [ay] satisfies the conditions of lemma 2, then
(20) |4,] < (m+jna—a)2(m—a)"~

This corollary follows from the remark that the right-hand side in
(12), regarded as a function of p, attains its maximum value only in
one point p = n/2.

COROLLARY 4. If A, = [a;] satisfies the conditions of lemma 2, then
“the aquality

|4, = (m+na—a)(m—a)"~*

holds if and only if n is even and A, differs non-essentially from the matriz

m -
A, 0
M..=[ n2 ]’ hevd Jm: a m ... a
0 A,
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Proof. Let fi;uz be a matrix which is obtained from A, 2 by putting
a in place of m in the left upper corner.

If |4, = (m+ 3na—a)*(m—a)"*, then, from the remark in the
proof of corollary 3, it follows that p = n/2. Therefore n is even. It is
obvious that in this case the inequalities (14)-(17) become equalities.

It follows from equality in (17) that p, = p = n/2. Therefore the
matrices ¢' and D are of the same order »/2. It follows from equality in
(16) and from Fischer’s theorem that A, (see (13)) is of the form

, ¢ 0
' 0 D|
By equality in (14) and by corollary 1, ¢ = 7', 4, ,. Similarly in view
of the equality in (15) and of corollary 2, D = 7,4, 2 In both cases T,

and T, are non-essential transformations. Therefore A, differs non-essen-
tially from the matrix
A, 0

0 An,'z

We see further that A, differs from A, by one element which lies
in the left upper corner and which is equal to m in 4, and to a in A4,,.
The same is true for matrices M, and N,. Thus the matrix 4, required
in our corollary differs non-essentially from M,,.

On the other hand, it is easy to verify that

| M, = (m+ ina—a)¥(m—a)"2.
THEOREM 2. If n = 2(mod4), then
(21) |Bal < 2(n—1)V(n—2)"",
Proof. We assume |B,| + 0 for otherwise (21) is obviously true.
The matrix 4, = [a;] = B,BY | where a; =k£: bxbjy, is symmetric, posit-

ive definite and all its elements of the principal diagonal are equal to n.

Since n is even, all a; are even too, therefore min |a;| > 2 and the
number & = 2 satisfies condition (B) of lemma 2. *i#°

To verify that the remaining assumption (a) of lemma 2 is satisfied,
it is sufficient to remark that for » = 2(mod4) no three mutually ortho-
gonal rows do exist in B, (see e.g. [6]).

From corollary 3 we get

|4,] = |B,2 <4(n—1)2(n—2)""?
from which inequality (21) follows.

Colloquium Mathematicum XII %
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Estimation (21) is, for all » = 2(mod4), better than (1). It is easy
to verify that the right-hand side of (21) is asymptotically equal to
2/eVn®, which gives approximately 0.736Vn".

We shall finally prove, by using some examples, that inequalities
(2) and (21) cannot be, in general, improved.

Let B -
el [1R3in
+ + . R
Bz—[ _J: Bi=|++—++1| By = o 1. H
> S Sea | ot I
e s
| 44 4 =] oI RIE
e s e e ol e
— s e ok e s eve =
——————— bbb ot 4
s s o Sl i e of
o s oA drabies due o
UMD SR DRI (O Mg A
By = |+ — =4 b= = =it = |3
e duenk fadpas s =
e
+ 4= — o f— =
A
b b — =
=+ =+

where the sign -+ denotes the number 1 and the sign — denotes the
number —1. The determinants of all these matrices are maximal; the
matrices B,, B; and Bs were given in [7]; the construction of B, is com-
plicated and we do not go into details of it. The estimate given in Bar-
ba’s inequality (2) is reached for matrices B; and B,3;, and that given
in inequality (21) for B, and Bs.

To get other examples with analogous property we construct the
direct product (*) of matrices B, and Bs, which leads to a matrix B,,
of order 10, and the direct product of B, and B,5, which leads to a matrix
B, of order 26, both B, and B, with maximal determinants (°).

(%) If we replace each element of a matrix Cpn of order #» by a matrix D, of order
m multiplied by the replaced element, we get a matrix which is called a direct (or
Kronecker’s) product of the matrices Cp and Dy, and is denoted by On- Din. It is known
that ICn'Dml = Ion]m'IDmln.

(5) We conjecture that for all n = 2 (mod4) there exist matrices Bn = [bij]
with elements bij = -1 for which equality in (21) holds.
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