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LeMMA. Zy, ZyepB 7y < L3V Zy < 4.

Proof. Let Z be the intersection of all 7', Ze S, such that 7
contains every element ¥V of ¢S for which there exists in S an ele-
ment W. By (3), Ze¢S.

The set

(7) & = {R|(RegS&R > Z) V RepZ}

is one of the 275 in (2) for § as Z. For, intersections of sets of elements
of & are again in & and if Re %, then RTe ¥ (in case B > Z&R +# Z
yR¢Z since otherwize R would be one of the Vs, with W = Z xmt’.
contained in Z: a contradiction). ’
Hence @8 =&. On the other hand, by (4), & < @8, s0 & = ¢8.
Suppose now Z # @. Then pZ must be an element of a set V and
V #Z by definition of Z, so V ¢ Z¥. But by ¢S = & we have Ve oZ
and (5), (6) imply V < Z*. Hence Z = @ and the lemma is proved
We define a mapping é:8 — p8 by ‘
Ps = (M Z.
ZepS
8eZ
Then se @s = @, and by (1) and (3), PsepS. (Ds)* is a proper sub-
set of ®s; s0, by (8), yPs = s and & is 1-1.
PFinally we define the relation < by

8 < 8 & Psy = Ds,.

Using the lemma and the fact that & is 1-1, we see i i

) q - ¢ immediatel

that < is a relation of total ordering. ’ o
Let Z be a non-v:oid subset of § and let 7 be the intersection of all

elements of @8 containing (as subsets of §) all s for seZ. »T must be

an element of some @s,, s,cZ. But then T = ®s,, for otherwise T would

be incorfxparable to @s,, contrary to the lemma. Hence s, < s for all seZ
and < is a well-ordering. ‘

(8)

{9)
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REMARKS ON DYADIC SPACES
BY

R. ENGELKING ianp A. PEECZYNSKI (WARSAW)

Let D = {0, 1} denote the two point discrete space. For any cardi-
nal number m by the m-Cantor set we mean the Cartesian product D™
of m copies of D. The %,-Cantor set is a well-known Cantor perfect set
on the real line. It is known (see e. g. [9], vol. IL, p. 13) that every compact
metrizable space is a continuous image of D¥. In [1] P.S. Alexandroff
defined a dyadic space as a compact space which, for some cardinal num-
ber m, is a continuous image of D™, and has raised the problem of whether
every compact space is dyadic. This problem was solved in [10] by E. Mar-
czewski, who has shown that every family of non-empty, pairwise disjoint,
open sets in D™ (and then in any dyadic space) is countable, and remarked
that the one-point compactifications of high power discrete space are
therefore never dyadie (for proofs see [8], p.166). The class of dyadie
spaces was investigated by Sanin [13], Esenin-Volpin [7] and, recently
by Efimov [6], [6a].

In this note we give simple proofs of two known theorems (1 and 2)
and we establish two theorems (3 and 4) which seem to be new. In section
1 theorems 1-4 are formulated and the proofs of theorems 1 and 2 are
given. Section 2 contains purely topological proofs of theorems 3 and 4
and two examples in connection with theorem 3. In section 3 we give
proofs of theorems 3 and 4 by using the “function space method”, based
on the fact that the functor C(-) establishes the contravariant isomorphism
of the category of compact spaces with homeomorphic embeddings
and continuous mappings onto as morphisms, to the category of Banach
algebras of all continuous real-valued functions on compact spaces with
homomorphisms onto and isomorphic embeddings as morphisms.

By space we always mean a completely regular space. By B,I, N
and D, we shall denote the real line, the closed interval 0 < @ <1, the
set of positive integers with discrete topology and the two point discrete
space, respectively. D™ and I™ denote the Cartesian product of m copies
of D and I, respectively. The Gech-Stone compactification of a space X
is ‘denoted by X. It is characterized among the compactifications of X
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(to within a hor.neomorphism keeping X pointwise fixed) by the fact
that every continuous function f: X — 1 has a continuous extension
over BX. This fact implies that every continuous function f: X -z
into & compact space Z has a continuous extension over BX.

1. Let {X.}ss be a family of spaces, ¥ a space, and let f: PX, — ¥

. i 8e8
be a continuous function.

It for some §, = 8 we have f(z) = f(y) for all & = {ws} a
) : = @} and y = {y,}
in £;X,, such that wf = ¥, for seSy, then we shall say that f depen(;s

only on coordinates belonging to S,. If f depends only on coordinates
belonging to some §, of cardinality at most m, then we gay that f de-
pends only on m coordinates.

We begin with two well-known lemmas (see e.g. [3]):

LevmA 1. Bvery real-valued function defined on the Cartesian prod-
uct 1;}.'2?8 of compact spaces depends only om ¥, coordinates.

Proof. Deno‘_ﬁe by O the family of all real-valued continuous functions
on 35 X, depending only on ¥, coordinates. For very feO let S(f) be

% c‘ountable subset of § such that f depends only on coordinates in § -
It is easy to see that for every f, geC the functions f+-g and f-g depend
only on coord‘lna,ifes in §(f)uS(g) and that any real-valued function
fon sf: X, which is a uniform limit of the sequence {fi} of functions be-

longing to €' depends only on coordinates in US(fi). Since the family
. i=1
O contains all the congtant functions and separates points of P X,
8y
geS

the lemma follows from th -Wei 98 g
iy e Stone-Weierstrass Theorem (see e. g. [B],

uousGJ?ROIt,?;.ARY. If § zsh a dyadic space, then, for every real-valued contin-
unciion g.on X, there ewists a compact meirizable
ioh That o0E] P izable subspace X, c X

Indeed, the function f = gh, where % is a mapping of some D™ =

:35 D, onto X, depends only on coordinates belonging to some countable

8y = 8. Since a continuous ima, i

) ge of a compact metrizable space is me-

trizable, we may take for X, the space L(PDy), where D* = D for
88 ‘

s, and Df = {0} for se@\G,.
Levua 2. Bvery function f defined on the Cartesian product PX,

of compact spaces and with values in a spa ? g
ce ¥ o 2 1
depends only on m coordinates. ! e C) > %

() The weight of a space X is the minimal cardinality of bases of X,
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Proof. By Tychonoff embedding theorem, ¥ can be regarded as
a subspace of I™ and f as a family of m real-valued functions. Since each
of these functions depends only on &, coordinates, the funcfion f depends
on - N, = m coordinates.

Since the weight of a continuous image f(X) of a compact space X
iz not greater than the weight of X, we have

COROLLARY. If X is a dyadic space then, for every continuous mapping
g: X — Y, into the space Y of weight m, there exisis a compact subspace
X, c X of weight m such that g(X) = g(X,).

TrmoreM 1 (Sanin [13]). If X 4s a dyadic space of weight m, then
there exisls a continuous mapping of the m-Cantor set D™ onto X.

Proof. By definition there exists, for some cardinal %, & mapping g

of the n-Cantor set D* = P D, onto X. In virtue of Lemma 2 there is
868

a subset S, c 8 of cardinality at most m such that g depends only on
coordinates in S,. The subspace DI = PD;c D°, where D; =D

seS
if sef, and D¥ = {0}if seS\S,, is homeomorphic with the m-Cantor set
and it is easy to see thabt g, = g|D¥ maps DX onto X.
LmvmmA 3. For every closed Gy set X in D™ there exists a countable

set 8= 8 and a closed subset X, = PD, such that X = Xox P Ds.
8eS, 88\ Sy

[]
Proof. In virtue of a result by Vedenisoff [16] there exists a con-
tinuous real-valued function f: D™ = I;Da — I suech that X = f~%(0).
8

By Lemma 1, f depends only on coordinates in a countable set 8, = S

and f=fp, where p:D"= PD,— PD, is the projection and
eS8 88y

fi: PD, —1I. We have then X =X,x Pst’ where X, = f;(0).
88 38\
&OROILAB.Y 1. If m is a cardinal number greater than R, then every

closed Gy set in D™ is homeomorphic with D™.

Indeed, we have shown that X = X,xD"; by a clagical result (see
[97, vol. IT, p. 58) Xx.D%, as & compact metrizable space not containing
isolated points, is homeomorphic with D%. We have then

X = X yx D" = Xyx D¥ox D™ = D¥x D™ = D".

COROLLARY 2. For every X which is a closed G set in D™ there ewists
a refraction of D™ onto X.
Indeed, we have shown that X = XX PS D,, where X, is a closed
8eS\ 8y
subset of ®-Cantor set P D, and hence (see [9], vol. I, p. 169) a retract

8¢ 0
of P D,. This means that there exists a mapping 7: }:l)“r - X, such
868, 8¢Sy
that ?r(m) = @ for weX,. It is easy to see that X iy a continuous image of
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D™ by the retraction g: D" = PDsxX P Dy — Xox P D, = X, where

88y 368\ 8 seS\ S8
g(@,y) = (r(z),y) for every me PD, and yc P D,.
#eSq $65\S

From Corollary 2 follows

TEEOREM 2 (B. Efimov [6]). Hvery space X which can be embedded
as a closed G5 in a dyedic space is itself a dyadic space.

In sections 2 and 3 we shall prove the following theorems (2):

ToeorEM 3. If the Cech-Stone compactification fX of & space X is
dyadic, then X is pseudocompact (%).

THEOREM 4. There 4s mo infinile extremally disconnected (Y) dyadic
compact space (°).

2. The following lemma shows that to prove Theorem 3 it is suffi-
cient to show that ¥ iz not dyadic. Indeed, if the space X can be con-
tinuously mapped onto a dense subset of ¥ then Y is an image of BX.

LevMA 4. For every non-pseudocompact space X there exists a continuous
function f: X — E such that f(X) is a dense subset of I.

Proof. We may confine our attention to X which are non-bounded
subsets of B. In this case X containg an infinite closed subset X, = {z,,
@y, ...} homeomorphic with a countable discret space. Let {w;, w,, ...}
be the sequence of all rational numbers. By Tietze extension theorem the
function f, : X, — B defined by the condition f,(x;) = w;, fori = 1,2, ...,
can be extended to a function f: X — F. It is easy to see that f(X) is
dense in E.

Proof of theorem 3. Let ¢ be an extension over Sl of the function
fi B — 1 defined by
1 T 1
fle) =< ( )

Tl T2

e dg’) M. Katétov has remarked that Theorems 3 and 4 follow from his (unpub-
ishe

TrroreM. Bvery non-isolated point of « dyadic space is o limit point of « sequence
of distinet points.

. (*) By pseudocompact space we mean. a space X such that every real-valued fune-
tion of X is bounded. For normal spaces pseudocompactness coincides with countable
compactness. '

) M. Katétov has first remarked that SNV is not dyadic. His (unpublished) prool
mv'olves properties of the space 4,, eonstructed by Alexandrotf and Urysohn in [2],
which is compact, first cowntable but non metrizable, and thus, by a theorem due
to Ese.nin-Volpin [7], not dyadic. 47 contains a countable dense subset, hence it is
a continuous image of N, and SN cannot be dyadic. We have not succeeded in
adapting the elegant reasoning of Katétov so as to get the proof of Theorem 3.
) .(‘) A space X is called extremally disconnected if the closure of every open set
in X is open; it is easy to mee that X is extremally disconnected if and only if any
two disjoint -open sets in X have disjoint closures. ' '
(°) This theorem has heen conjectured by P. S. Alexandroff.
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It is evident that g(SENE) = {0, 1} and that gy = f being one-to-one
on E there is no proper compact subspace X, « ¥ such that g(X,) = g(8F)
= I. Since pF is not metrizable, we obtain, by Corollary of Lemma 1, that
AE is not dyadic.

From Theorem 3 follows

COROLLARY. The Cech-Stone compactification X of a metric space X
is dyadic if and only if X is a metrizable space (°).

Proof of theorem 4 follows, by Theorem 3, from

LEMMA 5. Hvery infinite extremally disconnected compacl space con-
tains, as open subset, a homeomorph of BX,, for some normal and non-pseudo-
compact Xg.

Furthermore, X, can be represented as a countable union of pairwise
disjoint nom-empty closed-open subsets.

Proof. Sinee X is infinite and extremally disconnected, there exist
in X closed-open sets ¥y, ¥y, ... such that

V: %0 and V;~nV;=0 fori #j.
o
X, = UV; is a non-pseudocompact space and, as an F, in normal
izl

space X, it is normal. Its closure X, is a closed-open subset of X. To show
that X, is homeomorphic with X, it is sufficient to prove that every
function f: X, — I has an extension f: Xo—I(".

For any disjoint closed sets 4, B < I the counter-images FH(4)
and f~(B) are disjoint and closed in X,. In view of the normality of X,
there exist two open (in X,, and thus in X) sets U, V such that

U A)c U, BT UAV =0.

Since X is extremally disconnected, T~V = 0 and 7' (4) ~f~1(B) =0.
By a theorem due to Taimanov [15] this fact implies that there exists
an extension } of f to X, X.

COROLLARY 1. Bwvery infinite ewiremally disconnccted compact space
contains a homeomorph of N.

Indeed, X, being normal and non-psendocompact contains a closed
subset homeomorphie with N¥. The elosure of ¥ in X, is by TUrysohn
extension theorem homeomorphic with AN.

CoROLLARY 2 (Geba and Semadeni [4]). Buvery infinite extremally
discomnected compact space X can be continuously mapped onto N.

o

Indeed, let X, = (JV;, where V; #0, V;~AV; =0 for 4 #4jand V;
=1

is open in X,, be a subset of X sueh that X, is open in X and homeo-

and

(%) See Appem‘liﬁ at. the end of this paper.
(*) This is known, see [5], p. 23, problem 1H.6. We present here another proof.
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morphic with pX,. The mapping _f: Xy - N such that f(V;) =4 for
i =1,2,... can be extended over X, and over the whole X; every such
extension obviously maps X onto AN (7).

ExAwreLE 1. There exists a normal (non-compact) pseudocompact
space X such that BX s not dyadic.

Let X be a space of all ordinals less than or equal to the first uncoun-
table ordinal £ with order topology. It is known (see e.g. [5], p. 74)
that X is a normal and pseudocompact space and that gX = X o {Q}.
Every non limit ordinal is an isolated point of SX. It follows then that
BX contains ¥, pairwise disjoint non-empty open sets and that AX is
not dyadie.

ExAmPpLE 2. There exists a non-compact space X (pseudocompact
by Theorem 3) such that fX is dyadic.

Let X be the subspace of I' = P I, composed of such {m,} that
8eS

#g = 0 for all but a countable number of seS. It is shown by Corson
in [3] that I° is the Cech-Stone compactification of X. Sinee I is a con-
tinuous image of the Cantor perfect set, I° iy an image of I, i.e. X
is dyadie.

3. If X is a compact space, then C'(X) denotes the Banach algebra
of all continuous real-valued functions on X with the norm ||f|| = sup HEIB
88

Restating the definition of the dyadic space in the terms of the dual
category of algebras of continuous functions we get

PROPOSITION. 4 compact space X is dyadic if and only if the algebra
C(X) oan be isomorphically embedded into an algebra C(D™).

This proposition is a consequence of the general fact (see e. g. [5]
p. 141) that in order that there exists a continuous mapping from a comz
pact space X into a compact space Y it is necessary and sufficient that
the algebra C(Y) can be isomorphically embedded into the algebra C(X).

LevwmA 6. Let X be o dyadic space and let A be & linear closed sub-
space of O(X). If A is isomorphic (= linearly homeomorphic) with the
Banach space o of all convergent real sequences, then there emists @ continuous
linear projection from C(X) onto A.

Proof. Since X is a dyadic space, ¢/ (X) may be congidered ag a sub-
space of C(D™) for some m > §,. Thus it is sufficient to show that there
exists a linear continuous projection P from C(D™ onto A; indeed, the
restriction of P to C(X) is the required projection. ’ ’

" . .
() R. Bikorski has remarked that by a similar way one can extend Theorem
4 and Corollary 2 to the case of zero-dimengional compact Hausdorff spaces with the

property that every open set which is a comntable [
The open clommn, sum of cloged-open sets has
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By the assumption, 4 is separable, i.e. contains a countable dense
subset fi, fa, ... Bach of the functions f; depends, by Lemma 1, only on
coordinates in some countable set S; = 8. It is easy to see that every

[~}
function fe A depends only on coordinates in S, = | §;. Let B be a sub-
i=1
algebra of ¢(D™) consisting of all functions depending only on coordina-
tes in Sy. Then B = 4 and B is isomorphic, as a ring, to ¢ (D). Since B
is separable and 4 is a Banach space isomorphic with ¢, by 2 result of
Sobezyk [14] (see also [11], p. 217), there exists a linear continuous pro-
jection P, from B onto A. For any feC(D") let P,f = g, where g({z}) =
= f({s}) and @; = @, for sy, z, = 0 for s¢S,. It is easily seen that P,
is a linear continuons projection from C(D™) onto B. Finally we put
P =P.P,.

TarorEM 5. If X is a dyadic space, then no clused linear subspace
of C(X) is isomorphic to the space m of all bounded real sequences.

Proof. Suppose, on the contrary, that there is a dyadic space X
such that there exists a subspace B of O(X) isomorphic with m. Let 4
be a subspace of B isomorphic with ¢ (for example) the subspace correspon-
ding to the set of all convergent sequences in . Then, by Lemma 6,
there exists a continuous linear projection P from C(X) onto A. Thus
the restriction of P to the space B would be a linear eontinuous projec-
tion from B onto A. Bub this contradicts the result of Philips [12]
that there is no linear continuous projection from m onto its subspace
isomorphic with c.

Proof of theorem 3. Suppose that X is a non psendocompact space.
There exists a continuous real-valued function f: X — F such that
4 = f(X) is not bounded. The space 4 contains, as a closed subset, a space
M homeomorphic with N. Let B be a subspace of the space 0*(4) (of
all bounded real-valued functions on A) composed of all broken lines
with vertices in M. Tt is easily seen that B is a linear subspace of g*(4)
isomorphic with m. But C*(4) iz a linear subspace of O X) = C(BX)
and, by Theorem 5, X is not dyadic.

Proof of theorem 4. By a result of Geba and Semadeni [4] (which
is the dnal restatement of Corollary 2 to our Lemma 5) if X is an extre-
mally disconnected infinite compact space, then the space O(X) contains
a subspace isomorphic with m. Hence, by Theorem 5, X is not dyadie.

Appendix. B. Efimov has kindly communicated to us that the following
theorem (which presents a generalization of our Corollary of Theorem 3)
is a consequence of his recent results [6a]:

THEOREM. A compactification rX of a meiric space X (i. e. a compact
spaoe containing X as a dense subspace) is dyadic if and only if rX is
a metrizable space.
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We present here another proof of this theorem.

Lennia. For every compactification rX of a separable metric space X
there exists a meirizable compactification »'X of the space X, smaller than
rX, i. e. such that for some g: rX — ' X we have g(w) = o for every veX.

Proof. Let B be a countable basis of X and let P be the set of all
pairs (U, W) of elements of B such that U ~ (7 X\ W) = 0 (closure in »X).
For any pair p = (U, W)e P lot f,:7X — I be such that f,(U) = {1}
and f,(*XN\ W) = {0}. It is easy to see that g = {fp}pes : 7.& > I¥0 is the
homeomorphic embedding and that »'X = g(rX) is the required com-
pactification.

Proof of the theorem. It is sufficient to show that if »X is dyadic
then X is metrizable.

It is well known that every non separable metric space containg,
for some ¢ >0, an uncountable family of digjoint e-spheres. Since in rX
every family of open, pairwise disjoint, non-empty sets is countable,
X is separable. Let +'X and g¢:7X —»'X be as in Lemma. Because
grIN\X) = r"I\X (see [B], p. 92) if g(X,) = g(rX) for some X, c »X
then X < X,. It follows then, by Corollary of Lemma 2, that »X is metriz-
able.

Let us note that by the same method one can prove that the weight
of any dyadic compactification rX of a space X is equal to the weight
of X.

COROLLARY. Huvery dispersed (not containing perfect subspaces) dyadic
space X s metrizable.

Indeed, such X is a compactification of the (discrete)
isolated points.

set of its
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