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An algebra 4 over the real field R is a vector space over B closed with
respect to & product @y which is linear in both » and y and such that the
condition A(2y) = (Ar)y = «(Ay) holds for any A<R and #, y e4. The pro-
duct is not necessarily associative. We assume that the algebra A con-
taing a unit element ¢, i. e., an element satisfying the equality ex = xe = =
for any weA. Given any subset B of 4, by dimB we denote the linear
dimension of B, i. e., the power of a maximal set of linearly independent
elements of B. By [B] we denote the linear set spanned by the elements
of B. For arbitrary elements @y, #,, ..., %, by 4(zy, %, ..., 2,) we shall
denote the subalgebra generated by u;, #s, ..., #,. An algebra is called
normed if it is a normed space over R under a submulliplicative norm
I, i. 6., & norm satisfying in addition to the usual requirements the
condition [lzy|| < |lz|-lly)l for any » and y in A. A norm || || is called mul-
tiplicative if |lwy|| = |l#-lly|| for every »,yeA. A submultiplicative norm
|1l is called minimal if ||o*] = |jw|* for any weAd. ,

The subalgebra A, of an algebra A is called a two-sided ideal if x.@,
v e A, for every z,e4, and every #eA. An algebra A is defined to be the
direct swm of the two-sided ideals 4, (r =1,2,...,) if every element
weA can be uniquely represented in the form @ = }'#,, where m.cA,

r

(r=1,2,...) and the sum } @, contains a finite number of non-zero com-

r
ponents. If A is the direct sum of two-sided ideals 4, (r=1,2,...),
we write 4 = Y A,. For an # in A we write = ) @, with zred,.
r r

Let 4 = } A,; then for every pair of indices s, (s 5 ?) and for auny
T
wged,, med; the equation

(1) DeBy = ByPy == 0

holds. Indeed, by the definition of two-sided ideal, we have m,w;, ®@s<A,
(r = s,1). Consequently, the supposition z@; # 0 or z;@; # 0 contra-
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dicts the uniqueness of the representation of s, or @, as the sum of
elements of the subalgebras 4, (r =1, 2,...). As a direet consequence
of (1) we obtain

(2) Y = (Emr) ) (5] 'l/r) = E Lyl
r r r
and
(3) 7= ‘}:w
r

We note that it 4 is an algebra with the unit element ¢, then the
direet sum A = }'4, contains only a finite number of ideals A4,. Indeed,
-

let e = 2’37. with e,ed,, and suppose that for an index s we have ¢, = (.

*
Then, by (2), for any non-zero #,e.d;

Ly = Dl == msger = Pyl = 0,
pm

which is impossible. Consequently, ¢, = 0 for all . Since, by the defini-
tion of the direct sum, the sum e = Y e, contains only & finite number of
”

non-zero elements, there is only a finite number of A,’s in the sum A, == 4.

<

TaeEOREM 1. Let A be a normed algebra with o minimal norm. If A
is the direct sum of ideals A, (r =1,2,...,0), then for every med the
equation

@) loll =] 3 a | = maxfi.
. =1 <r<m
holds.

ProoOF. We prove the theorem for » = 2. The general case is easily
deduced from this by induction. Suppose 4 = 4,-+4,. Then any » in
A can be written in the form # = x, -+ ,, where z,¢4,, Xyed,. If # =0,
then #; = #, = 0, so the theorem is true for # = 0. Let # 5% 0 and lot
qu,ll = ]| Since, by (1), @@, = 0, and since @, = @—m;,, we have
2, (¢— ;) = 0, whence

(5) == L.
The norn is minimal, o from (5) we infer
(6) lealf = fadll = llms@ll <l la]

Since #, % 0 (because otherwise ||z, < |myf| = 0 and, tonsequently,
# = 0), from (6) we obtain the inequality |z,|| < |iz|.
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Define (2) = &, () =
ger m we have

akya . . .
(@) ). According to (3), for every inte-

o )nm oML o

(@) = (@ +ws) = ()" - (@)

Henee for every integer m

- om N ECm

(M W)™} = )™+ )™ -
Sinee il = 0 and the norm is minimal, (7) gives

UL

i 412 . N n 1 Y3
Hal™ = T -

and

S

for every integer wm. Suppose [@,) < lell. Then, by (3),

g'm, 21’”
1 < lim [(M) + (llw_zll) ] = )
moseo L\ ] flasl
which is a contradiction. Consequently,
ol = loall = max (jlaf| e fi)
as required.

Henceforth by K we shall denote the unit ball of a normed space,
i.e., the set {#:|lz| <1} and by S the unit sphere. i. e., the boundary
of K. The unit ball K of a normed space is said to be rotund ([2], p- 111)
if every open segment in K is disjoint from its boundary §. In particular,
the unit ball of a space whose dimension is equal to one is rotund.

LEMMA 1. If the unit ball K of a normed linear space L 48 rotund,

then ot Teast one of the inequalities
ol = loll,  llet gl > fy

s valid for any patr of elements x, yeL (y 5= 0).

Proof. Of course our Lemma is true for # = 0. Let us suppose that
there exists w pair of non-zero elements »,yeL such that
(9) llw—yll < Il

(10) ol <2 el

Let

1
2 e =y
i (m—y), v » (z4y)
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Since y +# 0, w % 2v. By (9) and (10), u,veK. Therefore for any
aeR, 0 <a <1, [eu+(1—a)v]eK, i.e. the open interval (u,v) is con-
tained in K. Since o/|jzf| = ¥(u-+2) and % # v, we have z/|[z] e (u, v). But
o/|lzlie8, and this contradicts the definition of a rotund ball. Lemma 1 is
thus proved.

THEOREM 2. Let A be a normed algebra wnder a minimal norm. Sup-
pose that A, treated as « linear space, is the direct sum of linear subspaces
Ay, Ay, .. A, and

(11) = max ||@,||

l<r<n

“jmr (Bred,).
r=1

Furthermore, suppose that for every indes » the unit ball K ~ A, of the
subspace A, is rotund. Then all the subspaces A, are two-sided ideals of A
and the algebra A is the direct sum of subalgebras A,, Ay, ..., A,.

The proof of Theorem 2 is based on the following lemmas. Hence-
forth we denote by , or (z), the component of # belonging to the sub-
space A,.

LmMMA 2. For any xS there exists an index v such that

Il = 1.

Lemma 2 is a direct consequence of the fact that the norm is nini-
mal and of formula (11).

LeMMA 3. Let a, denote an arbitrary element for which

(12) flall =

and let for an index s

(13) li(an)sll = 1.
Then for any t +r and for every w,

(14) (@) = 0.

Proof. Without loss of generality we may suppose that

(15) g} = 1.

Let us suppose that there exists an index ¢ == 7 and an element
@;e8 ~ Ay, for which (a}), 5 0. Since the ball K ~ 4, is rotund, we may
apply Lemma 1 to the elements (a7),F (af),. In accordance with (13),
this shows that at least one of the above elements has & norm greater

than 1. Let e. g. |(af)e— (#})g] >1. A similar argument shows that at
least one of the incqualities

“(af)s‘“ (mf)s:[: (@~ @)l > ”(“ﬁ)s'" (mf)nn >1

icm
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is valid. Accordingly, let
I Lar+ @) (an— @) Tull = [l(@2)s -~ ()e — (@pity—- myaty)gl| > 1.
But this is impossible. In fact, since ¢ # #, by (11), (12) and (156)
we have

HL(ar+ @) (=) Tl < 0 (@ t22) - (@ — )

= |Ia'r+mtll'llar“‘vtll = (n]axuur”s llwdl)z =1.

If we argue similarly, we see that the assumption (af), # 0 leads
to a contradiction in all the other possible cases.

LeMMA 4. Let a, denote an arbitrary element belonging to S ~ A, and let
s denote such an index that (a%), = 1. Then for any t +r and every e A,

(@) = (Byap)s = 0.

The proof of Lemma 4 is analogous to that of Lemma 3. We con-
sider the elements of the form

(16) (a))sF (@,0,F a,1)s,

where @;eS ~ A, (¢ % r) and we show that, for the norm of one of the ele-
ments (16), one of the assumptions (a,z), # 0 or (mga,), # 0 implies
inequalities which are impossible.

LeMMA 5. For every s, there exists one, and only one, ry such that for
any @ eS8~ A, the equation ||(a})sll =1 holds.

n
Proof. Let us consider an arbitrary element e= Y a,, where for
=1

each r|e,j = 1. By Lemma 2 for each index r there exists a non-empty
set E(a,) of integers such that for any s<F(a,) we have ||(a2)]| = 1. From
Lemma 3 it follows that for any pair #, 7, (r; ;) the relation F(a, )~
~ E(a,,) = 0 holds. Indeed, if |[(a§1)31][ =1, then “("'52)81“ = 2 By {1,2,...,

...,n} we denote the set of integers 1,2, ..., n. Since (JH(a,) c {1,2,
’ r=1

k¢ -
...,n} and U B(a,) has n non-empty disjoint components, it follows
f=]

that each of the sets F(a,) contains one and only one of the numbers
1,2,...,n, and each of them belongs to one of the sets E(a,). Hence,
for each s, there exists an integer r, such that |[(a§0),u|| == 1. In virtue
of Lemma 3, B(w,) # E(a,) for any r #7, and every @, ¢S ~ 4, . There-
fore B(w,) = E(ay), and Lemma 5 is thus proved.

LA 6, If r s, then for any o.edy, @ped,

Ty = B = 0.
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Proof. Without loss of generality we can suppose that |z =
== |lmgfl = 1. Clearly, it is sufficient to show that the equation
(17) (2p@5); = (@sp)e = 0
is valid for any index #. By Lemma 5, for every # there exists an index
m such that the equation

(18) (@)l =1

holds for every w,eS~A4,. If m =17 or m = s, then (17) follows from
Lemma 4. Now suppose that m £+ and m % s. As in the proof of
Lemma 3 we show the truth of the inequalities

(19) N (m+ 2, F @) (@ + 2 F 3 L] < 1.
Agcording to (18), by Lemmas 3 and 4 we have
(20) [(@m + @ @5) * (@ + 00T 25) s = (wfn)t:[: (wrws)t:F (@5 )e-

If anyone of equations (17) were not true, then, as in the proot of
Lemma 3, we could show that at least one of the elements (20) has a norm
greater than one, but this contradicts inequality (19). Lemmsa 6 is thux
proved.

LEMMA 7. For every index r and for any #,cA,, o belongs to A,.

Proof. First we show that ¢, = 0 for any s, ¢, being the s-th compo-
nent of the unit element e belonging to the subspace 4,. Indeed, by
Lemma 6,

k3

(21) By = Lyl = Z%Gr = Lyl
r=1
Therefore e, 0. Substituting in (21) 2; = ¢, we obtain the equa-
tion
(22) e = 63

valid for any s.
Since the norm is minimal, by (22), we have

(23) flesll = lle3ll = el
for every index s. But ¢, 5= 0, 80, by (23), |lés]] = 1 holds for any index s.

This means that e,eS8~ 4, for each index 7. Moreover, for any # we obtain
the equation ‘

(24) liteR)ell = li(enll = Jle] = 1.
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Let @, denote a fixed element of a fixed subspace 4, . According
to (24), by Lemma 3, we obtain the equation ll(mf.o)sﬂ = 0 valid for each
& #7,. Hence

"
@y = D) @h)s = (@} )ry e Ar,-
=1

Lemma 7 is thus proved.

LEMMA 8. For any @, Yecd, (r = 1,2, ..., n) we have Gplip, Yy A,
T Proof. By Lemma 7, there is nothing to prove whenever g, = y
(yeR,r =1,2,...,n). Suppose that there exist indices 7,8 (r =9),
and linearly independent elements a, and b, such that (a,.b.)s 7 0. Since
(a,b.)s % 0, at least one of the elements (a.b,);F (b.ar); is different from
zero. Let, then,
(25) (trbp—braty)s = 0.
We assume that
(26)

ool < 3. ilbell < 4

(If this were not true, we should consider the elements @, = a./2 |la|j,
b, = b,/2|b,| in place of a, and b,, respectively). Formula (26) implies
the inequality

e F bl < fell 41104l = 1.
Therefore, by (11), (24) and (27),
{5+ (an— 02} [&sF (@t br) 1l
< |1 Les+ (@r— bp)]- [esF (a0 11
< [les+(ar— )| - llesF (@t r)l]
< max{|lesll, fla,— b)) - max (llegll, llan+bll) = 1.

(27)

(28)

A 78, by Lemmas 6 and 7, the elements (a7)s, (4)s, €s°(art+5r).
(@y~—b,) ¢, are equal to zero. Hence, by (22), we obtain

(29) {les+ (@ — by) ] [esTF (ar+ b1t = 66T (@rbp— Dytly)s.

‘We recall that the ball K ~ A, is rotund. Hence, according to (25)
and (24), at least one of the elements (29) has a norm greater than one,
but this contradiets (28).

Tn the same way we show that the suppositions (a,b,)s 7= 0 or (bpap)s #= O
{r # ) in all the remaining cases yield contradictions. Lemma 8 is thus
proved.
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Proof of Theorem 2. We have shown that all 4}, 42, o,v,, v,
belong to A, for any «,,y,ed. (r =1,2,...,n). Hence the subspace A,
forms a subalgebra. By Lemma 6, 4, is a two-sided ideal for every index r.
In other words, the algebra A4 is the direct sum of the two-sided ideals
A, (r=1,2,...,n).

Now we consider two examples which show that some of the assump-
tions of Theorem 2 are essential.

Example 1. Let A be an algebra generated by elements a,, a,, ...,
a, (n > 2). Let a,.,=a,. The multiplication is defined by the formulas

G =a; (r=1,2,...,n),
(30)
B Oy = Aglhy = it r s,
and the norm by the formula
n
31 @, || = max|a, apeR).
(31) . ”’;ar » 1<r<”1 ol (areR)

A straightforward verification shows that the algebra A does not
contain the unit element. In fact, by (30), we have

n
Ay ) Cplly = Q1 Ay F @y
r=1
n

for any element > a.a, in A.
=1

On the other hand, we show that A satisfies all the remaining agsumyp-
tions of Theorem 2. Clearly, ||| satisfies all the conditions postulated in
the definition of a norm. Moreover,

n n
| ) e 360
*=1 =1

n
|
]I = “ E a,./ﬁ'.,a,_,_lu = max|a, |
V=1 1<r<n

n n
L max |a,] ‘max |f,] = “Z%% -||2/3,.a,l .
Isr<n l<rsn r=1 o=l
Consequently, ||| is a submultiplicative norm. It is minimal oo,

because

2

n n
(50 =1 5| = mom e = e = | ST

Let L, = [a,] denote the one-dimensional subspace spanned by
the element a,. Of course A is the direct sum of the subspaces L,, and
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the unit balls K ~ L, are rotund (r = 1,2, ..., n). Formula (11) is also
satisfied. For, by (31), for each index » we have |lu,]| — 1. Hence

k3
H Z a,u,” = max e, = max jja,a,.
=1 i<rsn l<r<n

But the subspaces L, are not subalgebras, because by formulas (30)
a; = a, +1¢L.. The existence of the unit element is thus an essential
condition in Theorem 2.

Now we show that the assumption that the norm ||| is minimal
cannot be omitted.

Example 2. We define in the complex field ¢ the norm | || by the
formula

(32) llae+ gl = lal+1p]

(¢ denotes the unit element, ¢ — the imaginary unit). Clearly enough,
I || satisfies all the conditions of the definition of a norm. Moreover, [lef|= 1
and the fact that || || is a submultiplicative norm, is easily verified ag fol-
lows:

(e B1%) -(aze+ Bot)l] = [|(az 0o — B1Be) e+ (0 ot 2 81) 2]
= loya;— B fol + lor fot+ x| < |y ol -+ B Bl + [alﬂ;I'{' fas il
= (laa} =+ B (laal + 1Bel) = llowe+ Bud] - llaze+ Bz

We consider one-dimensional subspaces I, = [e;], L, = [e;] gene-
rated by the elements e, = 4(e—1), e, = 4(e+1), respectively. Since
the elements e, ¢, are linearly independent, the algebra C is the direct
sum of the subspaces I, and L,. In virtue of the fact that dim L; = dim L, =
=1, we see that the unit balls K~L, and K~L, are rotund. Formula
(11) is satisfied too; in fact,

&6+ Greall = R(&+ &+ (&— &)l
= }(|&+ &l + 16— &) = max([&], 1&])-
However, the norm || || is not minimal, because, for example,
le+ill = 2,  l(e-9)) = [12d]] = 2 # [le+|f".

Since L, and L, are not subalgebras of the field ¢, Theorem 2 is not
true in our case. Hence the condition that the norm is minimal is essen-
tial in Theorem 2.

The following two theorems concern the theory of associative algebras.
We now list some well-known facts of the theory of associative algebras.

N, —
An element aed is called nilpotent if lim Vo™ = 0. An element acd
N0
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is said to be properly nilpotent if both za and az are nilpotent for every
2 of A. The set consisting of all properly nilpotent elements of an algebra
A is ealled a radical. An algebra is called semi-simple if its radical con-
tains only the zero element.

The ideals different from the zero-ideal and from the whole algebra
are called proper ideals. An algebra is said o be simple if it does not con-
tain a proper ideal. Every finite-dimensional associative semi-simple
algebra is the divect sum of two-sided simple ideals ([1], p. 38).

The algebra A is said to be a division algebra if for every a, b in 4,
with a = 0, the equations ez = b and ya = b are solvable in A. Let
B(by, byy .y by) and C(6y, Cay ..., 6;) be m and dimensional subalgebras
of an algebra A such that every element of B commutes with every one
of €. Moreover, let the mt products b.c, form a basis of A. Then we shall
call algebra A the direct product of subalgebras B and ¢ and we shall
write A = Bx (. Every simple algebra A is expressible as M XD, where
M is a total matrix algebra and D is a division algebra ([1], p. 39, Theorem 9).

LEMMA 9. A normed associative algebra A whose norm | || is minimal
containg mo milpotent elements different from zero.

Proof. By the definition of the minimal norm, the equation

21’!- . Nl
Vi@®| ="V il = ||
is valid for any <4 and every integer »n. Consequently, for every =0,
n,——
lim ylja"| 5 0.
A—>00

COROLLARY. A normed associative algebra A whose norm is minimal
i¢ a semi-simple algebra.

Two norms ||}, and || ||, defined in A are equivalent if there exist two
positive numbers m and M such that mz|; < |2l < M|, for any
zeA. It is well known that any two norms in a finite dimensional linear
space are equivalent.

Lemma 10. If || [ ond | |l are two minimal norms in a finite dimen-
sional algebra A, then for every x in A the equation |||, = |l|l, holds.

Proof. Suppose on the contrary that there existy an element a in

A such that |a]l; < [jall,. Of course @ 5 0. Let nus consider the element
b = af||all;. Wehave

|
i = ol g

”a”2 Hbllz == 1,

Since the norms || ||, and || |, are minimal, we have

IOl = oI = ¢, oY = " =1
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for any integer n. Hence

lim |6l = 0

Nms0G

and  lim J(5)Y")ls = 1.
N—>00

But this is impossible, because the norms || jj, and || ||, are equivalent.
Lemma 10 is thus proved.

Since in each of the algebras: the real field R, the complex field C,
and the quaternion algebra @, the multiplicative norm is minimal, Lemma
10 implies

COROLLARY. Any minimal norm in cach of the algebras: the rveal field
R, the complex field C, and the quaternion algebra @, is multiplicative.

TaROREM 3. If A is an associative, finite-dimensional normed algebra
whose norm is minimal, then )

1) A is the direct sum of subalgebras A, (r =1,2,...,n) each of which
is isometrically isomorphic to one of the following algebras: the real field,
the complew field, the quaternion algebra.

n

2) For any x = 3, @, (#,ed,) we have
r=1
flwll = max [,
l<rn

Proof. By Corollary of Lemma 9 the algebra 4 is semi-simple.
Moreover, it is associative and finite-dimensional. Consequently, it is
the direct sum of two-sided simple ideals A4, (r =1,2,...,%). Every
subalgebra A, is the direct product of a division algebra D, and a total
matrix algebra M, ([1], p.39). Since 4, (r =1,2, ..., m) does not con-
tain any non-zero nilpotents, the total matrix algebra M, is isomorphic
to the real field (the argument is that any matrix the elements of which
are all zero except for the one that lies outside the principal diagonal, is
a nilpotent element in the total matrix algebra). Therefore, every subal-
gebra A, is a division algebra. By the well-known Frobenius Theorem
([3], X, §52) every 4, is isomorphic to one of the following: the real
field, the complex field, the quaternion algebra. The existence of the de-
gired isometrical isomorphism follows from Lemma 10. The second part
of our theorem is a consequence of Theorem 1.

TeEoREM 4. Let A be an associative finite-dimensional normed alge-
bra under o minimal norm. If the group of isometries of A preserving the
unit sphere is finite, then the algebra A is the direct sum of real fields.

n
Proof. By Theorem 3, 4 = 3 A, where each A, r=1,2,...,m)
r=1

is isometrically isomorphic to one “of the following algebras: the real
field R, the complex field ¢, the gquaternion algebra Q. Suppose to the
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contrary that there existy a subalgebra Ay, A; say, which is nob iso-
morphie to the real field. We examine the trapsformation T, of algebra
A defined by the formula

1?&(2’“’1’) = “"1'1"" > Ly
r=1
where w denotes any element belonging to § ~ 4;. The transformations
T, are isometries preserving the unit sphere 8. In fact, in virtue of Corol-
lary of Lemma 10 the minimal norm in each of the algebras &, C,@Q,
is multiplicative; so, since u <8, we have [um,|| = [jull* (|2,]| = [l24]|- Henoe,
by Theorem 3, we obtain the equation

|2 3]

= “er y-”r” = max |2,] = ” ya«r

I€r<n

Since A4, is a division algebra, different transformations 7', corres-
pond to different eloements ueS~ 4;. Since dim.A4, > 2, there exist infi-
nitely many elements ueS~A4,. Accordingly, there exist infinitely many
isometries that transform the unit sphere § onto itself, contrary to the
agsumption. Theorem 4 is thus proved.
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A PROOF OF THE WELL-ORDERING THEOREM
BY
V. DEVIDE (ZAGREB)

The usual proofs of the well-ordering theorem proceed by induction.
It is also well known how to avoid induction and ordinal numbers in the
proof. However, the resulting arguments are rather lengthy. Here we
present a proof of this kind which we believe is still very short.

Let § be a non-void set and let 2 stand for “power-set of.” By the
axjom of choice there exists a mapping y: (#S—{@}) — 8§ such that yZeZ
for every Ze #8—{0@}. Let Z* denote Z— {yZ}.

We define a mapping f: #°8 —#°8 by

(1) & ={NZI0 #%c Z}o {ZT0 £ Z %},
Ze¥
i.e. for Zed'S, f% consists of all intersections of non-void sets of ele-

ments of & (considered as subsets of §) as well as of all subsets of S ob-
tained from elements Z (Z # @) of & by removing from them their ele-

ment yZ.

Next, we define a mapping ¢: 28 — 278 by
(2) 9= () Z.

EDNZANE

By (1), ¢Z < fpZ. Conversely, by (2), foZ = frnZ cNf&¥ < Z =
= ¢Z, hence
(3) foZ = 9.

By (2),
(4) Zye 92y = 92y < 92y

As @Z ~ {V|V < Z} is one of the 27 in (2),
(8) VegZ >V = Z.

By (4) and (5), ¢Z* < ¢pZ—{Z}. On the other hand, {Z}v¢z+ is one
of the Z’s in (2), hence

(6) @It = gZ—{Z}.
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