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tively, i.e. o} = @, @5 = —u,. Moreover, |2]° = |B|"+ |0]*, @2, =
= ®,4,, and there exists one and only one idempotent ¢ such that
2 = |a)%, and &£ = — o)’ for self-adjoint elements 2, and skew elem-
ents 2,.

Hence, by a simple computation we get the equation
wow = (W — @) (14 y) = 07— 25+ By -~ Byt
= (j&,*+ 2o e = [,

which completes the proof.

CoroLLARY 1. The subalgebra of A (A) spanned by squares zom
(we A (A)) is one-dimensional and, consequently, is isomorphic with the
real field.

COROLLARY 2. For any pair o,ye 4 (A) we have the inequality

lwoz+yoy| = lyoyl.

K. Urbanik has raised the following problem [5]:

If an absolute-valued algebra satisfies the condition |@*4y?| = |a?
for all # and y must it be isomorphic with the field of real numbers?

Sinoce the-algebra A7 (4) may be infinite-dimensional (see [4], p. 252),
Corollary 2 gives a negative answer to this problem.

REFERENOES

[1] A. A. Albert, .Absolute valued real algebras, Annals of Mathematios 48
(1947), p. 495-501.

[2] B. Gleichgewicht, On a class of rings, Fundamenta Mathematicae 48
(1960), p. 355-859.

[3] — On algebras with o quasi-involution, Colloquinm Mathematicum 9 (1962),
p. 49-53.

[4] K. Urbanik, Absolute-valued algebras with an involution, Fundamenta
Mathematicae 49 (1961), p. 247-258.

[6] — Problem 361, Colloquivn Mathematicum 8 (1962), p. 166,

Regu par la Rédaction le 25. 4. 1962

iom®

COLLOQUIUM MATHEMATICUM

VOL. XI ] 1963 FASC. 1

REMARKS ON ORDERED ABSOLUTE-VALUED ALGEBRAN
BY
K. URBANIK (WROCLAW)

Let 4 be a not necessarily associative algebra over the real field R,
which is a normed linear space under a norm | | satisfying, in addition
to the usual requirements, the equality |zy] = |2||y| (®,ye4). Such an
algebra is called absolute-valued (see [1], [2], [5], p. 337).

The aim of this note is to study ordered absolute-valued algebras.
An ordering of an absolute-valued algebra 4 is determined by the set
A+ of all positive elements of 4, i. e. A can be ordered if and only if
there exists a subset A+ of A satisfying the following conditions:

(i) 0¢d,

(ii) A+ is closed with respect to multiplication by positive real num-
bers and with respect to addition and multiplication in 4,

(i) i @ #0 and agA*, then —aeA*.

In fact, one can define a >b if a—bed™.

An absolute-valued algebra A is said to be of real character if «*+
+4? # 0 and ay-+yv # 0 whenever x = 0 and ¥ 5= 0 (z, yeA). Obviously,
each ordered absolute-valued algebra is of real character. The converse
implication is not true. Namely, the following theorem holds:

THEOREM 1. There ewists an absolute-valued algebra of real character,
which cannot be ordered.

Proof. The construction of the algebra satisfying the assertion of
the Theorem is similar to that presented in [7], p. 861. Let 4, be the space

‘of all sequences # = {&,} of real numbers containing only a finite number

of non-zero elements. 4, is a normed space with respeet to the norm

=]
Jo] = (Y an)'* and with the usual addition and sealar multiplication
A==l

{wn}"" {yn} = {mn'l" f'/n}a }*{wn} = {Mn} .

Let ¢ be a one-to-one correspondence of the set of all ordered pairs
of natural numbers onto the set of all natural numbers satisfying the
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conditions
1) p,1) =2, p2,1) =1
(@) ¢(ky, my) < @(hy, my) Whenever ky ky, m, < ny, and either k), > 2

or ms = 2.

The existence of such a correspondence can be easily shown. Put
& = —1 and &, =1 in the vemaining cases. We define the multipli-
cation of elements of 4, as follows: (L.} {yn} = {u), where 2, m) =
= gpmitelim (B, m =1,2,...). This product makes 4, an algebra over
the real field. Moreover, 4, 1is absolute-valued. Indeed, we have the equa-
tion

o

; Ic'm))”Z (_5:10 2”) "/ )

1 k=1 m=

o

my| = (ﬁ}zzi)”z = (

= (D) s = ot

Given an element z == {,} (© = 0) of 4y, by n(x) we denote the
greatest index n for which #, ¥ 0. By virtue of (1) and (2) we get the
formula

e
[\fja

&
-

m

i

n(ewy) = gln(z), n(y)) =3

whenever either n{z) >3 or u(y) > 2. Moreover, if 1 < n(y) <2 and
n(y) =1, then n(wy) <2. Henece, by a simple reasoning, we get the
equations '

n(@+4%) = max (p(n (), n(@)), ¢ (1(%), 1)),

n(oy+yo) = max (pln (@), (), ¢ (1(9), ()

if either #(2) > 2 or n(y) > 2. Thus in this case we obtain the inequal-
ities #* -9 # 0 and ay+y=z + 0. In the remaining case n(») = n(y) =1
we have the formulas n(a®+4%) =2 and n(zy--y2) =2, which com-
plete the proof of the real character of A,.

Pub ¢ = {a,}, where a; =1 and a, = 0 for » > 2. By simple com-
putations we get the equation (a’)a = —a. Suppose that the algebra 4,
can be ordered. Then the element o’ is positive and, consequently, aceor-
ding to the last equation both a and — a are either positive or negative,
which is impossible. The Theorem is thus proved.

Given any subset B of an algebra 4, dim B will denote the linear
dimension of B, i. e. the power of a maximal set of linearly independent
elements of B. The algebra A4, of real character constructed in Theorem 1
ix infinitely dimensional. Now we shall prove the following theorem:
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THEOREM 2. The real field is the only (up to an isomorphism) finitely
dimensional absolute-valued algebra of real character.

Proof. To prove our theorem it suffices to show that every finitely
dimengional absolute-valued algebra of real character is one-dimensio-
nal. By Albert’s Theorem ([1]) any such algebra A is an isotope of one

of the following: the real field, the complex field, the quaternion algebra,
or the Cayley algebra. In other words: a new multiplication #zoy can be
introduced in A, such that the algebra A becomes alternative, i. e. the
both alternative laws hold,

wo(woy) = (wow)oy, (woy)oy =wzo(yoy),
and 4 has a unit element e. Moreover, the multiplication @y in A is de-
fined in terms of the multiplication zoy by the relation
(3) zy = (Uz)o(Vy),

where U and V are fixed invertible linear isometries on A. The norm
in A is simply a Fuclidean norm.

Let 7! be the inverse of the transformation ¥, and p~ the inverse
in the sense of the multiplication o of the element p = UV~'e. The for-
mula

Wa =p~'o(TV"'2) (red)

defines a linear isometry W on 4. Since po(p~'o®) = » for every wed,
we have, according to (3), the equation

4) oy = (poWVz)oVy  (2,yed).

First we shall prove that dim 4 < 2. Contrary to this let us suppose
that dim 4 > 2. From the definition of the isometry W it follows that
We = ¢ and, consequently, ¢ is a proper vector of W. Of course, all prop-
er subspaces of W are either one-dimensional or two-dimensional. Let
us assume that W has a two-dimensional proper subspace spanned by
an orthonormal basis consisting of b, and b,. Of course, b, and b, are or-
thogonal to the unit element e and, consequently, b, 0 b, = b0 by = —e. Put

Wb, = ab+ pb,,
Wby, = —efb,+ cab,,

where o’+f* =1 and & =1 or —1. Setting a, = V-1b,, a, = V-1b,
we have the equation

ai+a3 = (poWb;)ob;+(poWhy)ob,
= a(pob;)ob+f(poby)ob—ef(pob)obytca(poby)ob,.

Col Mathemati xI P
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Since the elements e, by, by, are mutually orthogonal, we have, by
the alternativity, (pob;)ob, = —(pob,)ob,. Further,

(poby)ob, = po(boby) = —poe = —p,
and
(poby)oby = po(byoby) = —poe = —p.
Thus

@B4ai = —(L+e){ap+ B(pob)oby).

Since ai+-a2 # 0, we infer that ¢ = 1. Now, by simple computations,
we obtain the equation )

a8y 430y = (poWby)oby+ (poWhy)ob, =0,

vﬁieh is impossible. Thus the inequality dimd4 <2 is proved in the
case when the transformation W has a two-dimensional proper subspace.

Now let us assume that all proper subspaces of W are one-dimen-
sional. Let ¢, ¢, ¢, be an orthonormal system of proper vectors of W.
By ¢, and &, we shall denote the proper values of ¢, and ¢,, respectively.
Of course, &, =1 or —1, and & =1 or —1. Put dy = V7', d, = Vle,
and d, = V" %,. By simple computations we get the equations

d%"f‘d? = (1--e)p,
di+ d: = (1—e&)p,
dydy+dody = (5, &) ((p 006;) 002) .

Since the left-hand sides of these equations are different from 0,
we have the inequalities & # 1, & # 1, and ¢, # &, which gives a con-
tradiction. This completes the proof of the inequality dim4 <2.

Suppose that dim 4 = 2, i. e. that the algebra A is an isotope of the

complex field. Then equation (4) can be rewritten in one of the following
forms:

(5) »y = ao(xoy),

(6) zy = ao (z*oy™),
U] @y = ao(zoy*),
(8) zy = ao (z¥oy),

where #* denotes the complex conjugate of & and a is an element with
la) = 1. Denoting by ¢ the element orthogonal to ¢ and satisfying the
equation i0i = —e¢, we have ¢4 = 0 in the cases (3) and (6), and
¢i}-4ie = 0 in the cases (7) and (8), which contradicts the real character
-of 4. Thus dim A4 = 1, which completes the proof.
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Sinee the real field can be ordered in one and only one way, from
Theorem 2 we obtain the following

COROLLARY. The veal field with the natural order is the only (up to
an  isomorphism) finitely dimensional ordered absolute-valued algebra.

Now we shall show that the assumption of finite dimension is essen-
tial.

TuoREM 3. There exists an infinitely dimensional ordered absolute-
valued algebra. .

Proof. Consider a free groupoid @ generated by an element g (see
[5], p. 162). Bach element ¢ of ¢ different from g can be represented in
exactly one way as a product ¢ = @,a,, Where ¢,, a,eG. We define the
length of elements of ¢ inductively. The element g is the only element
of length 1. Further, if a, and @, are of length =, and =, respectively,
then the length of the product a,a, is equal to n,+n,. In other words,
the length of an element a from @ is the number of ¢’s occurring in the
expression ¢. In the sequel I(a) will denote the length of the element a.

Now we shall define by induction a well-ordering of the groupoid G.
We agsume that o S b whenever I(a) << 1(b). Suppose that the ele-
ments of length less than n are ordered, and Il(a) = I(b) =n (n >2).
The elements ¢ and b can be written in the form a,a, and b,b, respecti-
vely. Of course, I(ay) < n, lay) <mn, Ub)<<n and I(b) <n. We put
a -3 b if either a, 3 b, or a, = b; and a, 3 b,. It is very easy to verify

that ab 3 ¢d whenever either ¢ 3 ¢, b i d, or @ i ¢c,b 3d.
Let A be a real geparable Hilbert space and let ¢ — 4, be a one-to-one
correspondence of the groupoid & onto an orthonormal basis of A. The

product
(2 taio) (3 ate) = X} 3 dattoi
as@ acG aeG beG

makes 4 an absolute-valued algebra. For each non-zero element weAd

by A(z) we denote the non-zero coefficient i, with minimal index ¢ in

the expansion @ == 3 A,4,. Let 4 be the set of all elements ¢ with 1(z) > 0.
asF

It is eagy to verify that the set A fulfils all conditions (i), (ii), and (iii).
The Theorem is thus proved.

In the sequel by 8(4) we shall denote the set of all squares of ele-
ments from the algebra A. Further, [B] will denote the linear set spanned
by the elements of B (B = 4). Now we shall prove a generalization of
Theorem 2.

THREOREM 4. The real field is the only (up fo an isomorphism) absolute-
valued algebra A of real character for which S(A) is finilely dimensional.

Proof. Since zy+yzr = (v+y)*—o*—y®, we infer that azytywe
[8(4)] for any x, yeA. Let ¢, e, ..., €, be a basis of the linear subspace
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[8(4)]. The expression @y +-y» (¢, yed) induces n real bilinear funetio-
nals A (2, ¥), (@, 9)s .- (@, 9) by means of the expansion

n
aytyn = D) (@, Yo

Te==1
Suppose that dim 4 >dim §(4). Let ey, be an element of A linearly
independent of ¢, ¢, ..., €,. For any element acA the system of linear

equations
n+1l

D edfa e =0 (f=1,2,...,n)
k=1
N1
has @ non-zero solution By, Bay ...y Bupr. Pub b ;—_-12’1 Brer. OFf course,
j6 ==
b # 0 and
" n 'n-{%l
ab+ba = Y Jy(a, b)e = D D) Buks(a, e =0,
i=1 j=1 fe=1

which contradicts the real character of A. Thus, dimA = dimS(4)
and our Theorem is now a direct consequence of Theorem 2.

OOROLLARY. The real field with the natural order is the only (up to an
isomorphism) ordered absolute-valued algebra A for which 8(A) ds fimitely
dimensional.

An operation * defined on an absolute-valued algebra A is called
an involution if it satisfies the conditions

(Aot py)* = 2™+ py*,

(wy)* = y*a",
for any 1, ueR, and #,ycA (see [8]). We say that an absolute-valued
algebra 4 with the multiplication oy is induced by an involution, if there
exists a new multiplieation zoy in 4 making 4 an absolute-valued alge-
bra such that the multiplication xy is defined in the terms of the mul-
tiplication zoy by the relation zy = #*oy, where * is an involution with
regpect to the multiplication o (see [3]). In [4] for algebras induced by
2 non-trivial involution the equation dimS§(4) =1 was proved. Now
we shall prove the converse implication.

TaeoREM 8. If AimS(4) =1, then the algebra A is induced by an
involution.

Before proving the Theorem we shall prove a Lemma.

LevmA. If dim8(4) =1, then there exists an idempotent e such that
for any zeA the equation &* = |x|’e holds. ,

™ =w, o =o'y, " = ||
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Proof. Let ¢ be an arbitrary element of A with
(9) la] = 1.

Sefting ¢ = (a*)* we have

(10) le| =1,
¢eS8(A4) and, by virtue of the equation dimS(4) =1, a* = ae, where
aelR. From (9) and (10) it follows that either a = 1 or o = —1. Thus,

¢ = (a’)* = (ae)’ = ¢*. Further, for any element wed we have the equa-
tion #* = le (1eR), whenee follows the equation |1] = |o|. Consequently,
either * = |z|%¢, or & = — |z|*e. Contrary to the assertion of the Lemma,
let us suppose that there exists an element ¢ different from 0 such that
¢ = —le|*¢. The function f(u) defined by the formula (¢ pe)® = fu)e
is continuous. Since

fleDe+f(—lehe = (c+lele)+ (e —lele)’ = 26"+ 2efe = 0,
we can choose a number » for which f(¥) = 0. Thus (¢+»e)® = 0 and,
consequently, ¢+ve = 0. Hence we get the equation
—lef’e = ¢ = v,
which gives a contradiction. The Lemma is thus proved.

Proof of Theorem 5. Let ¢ be the idempotent satisfying the asser-
tion of the Lemma. From the equation (z+4y)’+ (z—y)* = 20°42y*
we obtain the inequality

lo+ 9" +lo—y* > 210" +4°| = 2 |lzl"e+lyle| = 2(jol*+ lyI*).

Thus, by Schoenberg’s Theorem ([6]), 4 is an inner product space.
Now we shall prove that if 4 and » in A are mutually orthogonal,

then the produet ww is orthogonal to e and
(11) w-+vu = 0.

Of course, it is sufficient to prove this statement under the additio-
nal agsumption |u| = |v] = 1. Since the transformation # -> ux is an iso-
metry on A and «* = e, we have the equation.

(uv, €) = (wv, ¥*) = (v, u) = 0.

Thus wv and, consequently, by symmetry, vu, are orthogonal to e.
Hence, and from the equations

126] = 2 = ju+0® = [ (u+0)| = [+ 0"+ wo+ vu| = |26+uv-+ vu,
126] = 2 = |u—0]* = [(u—0)| = |+ 0" —uv—vu| = |26 —uv—2vul,

formula (11) follows.
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Let A, be the orthogonal complement in A of the one-dimensional
subspace spanned by the element e. Each element  in A can be written
in the form » = le+2,, where 1eR and 2,¢4,. Put

(12) = de-em
and
(13) zoy = @'y,
Since |@*| = 2|, 4 remains an absolute-valued algebra with respect

to the multiplication (13). Now we shall prove that formula (12) defines
an involution with respect to the multiplication (13). The equations
(Ao py)* = Az* -+ py® and 2™ = o ave obvious. Taking into acconnt
formula (11) we get the equation

row® = (2%} = (de—m:,) = Pet oy — Alew, -+ w1 0)
= Petat = Vet 0+ AMew -+ wye) = (le-+m3,) = a* = a'ow.

Put @ = Aetmy, y = aet foy+»,, where @z, ,¢4, and , is ortho-
gonal to ;. Since e, x,e, ex, and o;2, are orthogonal fo e, we have,
in view of (11),

(moy)* = (2*y)* = ((Ae — ;) (ce+ By + mp))*
= (ade— B |m;|%e — ax, e+ few, + Aew, — vy w,)*
= (ah— f|my|*) e+ a6 — Blew, — Aeay o, 0,
= {al—p

= (ae+ iz m) (he — o) = ya* = y*oa®. ’

o1*) e — aem, -+ phis e+ Amye — myan

Thus the transformation (12) is an involution. Finally, the multipli-
cation 2y is defined in the terms of the multiplication (13) by the rela-
tion @y = 2*oy, which completes the proof.

From Theorems 2 and 5 we get the following

CorOLLARY. If the subalgebra generated by squares of elements of an
absolute-valued algebra A is of real chavacter and findtely dimensional,
then the algebra A is induced by an involution.
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