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For every subset W < X, W< m, and for every geZ, let Ly, be
a subset of Z defined as follows:

feLw, if and only if fiW = g|W

(i.e. it f(#) = p(x) for every ze W).

F is the m-field of subsets of Z generated by all the sets Ly .

Now we are going to prove that F™ is not weakly m-distributive,
if n>mt,

Let

T(w,n) ={feZ:f(@w) = 7},
and let
Ay = {T(®, n): weX}.

Every family 4,, n «¥, mt-covers F (see [2], p. 139).

It follows from the definition of Z that
() N ULz,n =0,

ne¥ zeX

where the interseetion and the union are set-theoretical.

Suppose that there exists a covering A of F' which w-refines every
A,. Thus, the field F being m-complete, every element of A is included
in the set-theoretical union of elements of 4,, for every #eY. Therefore
it is empty, by (i). Contradiction.

Consequently, by lemma 2.5, F* is not weakly m-distributive.
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A FEW PROBLEMS ON BOOLEAN ALGEBRAS
BY

ROMAN SIKORSKI (WARSAW)

The purpose of this short note is to collect a few problems concern-
ing Boolean algebras which seem to be interesting. Some of them were
mentioned in my expository paper [7], others were quoted in my book
[9]. Perhaps, the level of difficulty of some of them is rather low. In any
cage, their solutions will mean a progress in the theory of Boolean alge-
bras.

The first problem concerns the following simple theorem: If a Boolean
algebra 2 is m’-complete for every infinite cardinal m’'<<wmr, A4, 4,2,
A = 04 and T < m, then there exist elements B (teT) such
that

B, cA;y; B;~aBy=0 for t#% and 4 = UwrBi-

Problem 1. Is this theorem true without the hypothesis that 2
is m’-complete for every m’ < m? (P 434).

Another problem of this kind is

Problem 2. Find, for every uncountable cardinal w, a Boolean
m-algebra 2 with the property: if the join (Jwrd; exists in U and T<m,
then there exists a finite subset 7'c T such that Uwrd: = U 4s-
(P 435).

For m ==&, an example of such a Boolean algebra was given by
Sierpinski [4].

Problems 3-6 which follow are connected with a classification of
Boolean algebras discussed in my paper [7].

Problem 3. Find an example (for every uncountable cardinal m)
of @ weakly m-distributive Boolean m-algebra which is not m-distributive
(P 436).

In the cage where m = X, such an example is given by non-atomic
measure algebras (i. e. Boolean c-algebras with a strictly positive finite
o-measure). Other examples can be obtained e. g. by forming the direct
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wmion or the Boolean product of a non-atomic measure algebra and a
o-distributive o-algebra. Thus the following problem arvises:

Problem 4. Construet an example of a non-o-distributive but weakly
s-distributive Boolean ¢-algebra without using measure algebras (P 437).

Let S be a set of m-generators of a Boolean m-algebra 2, and let f
be a mapping from S into a Boolean m-algebra B. If f can be extended to
an m-homomorphism % from 2 into B, then f satisfies the following con-
dition:

(8) if izy(@)-4; =0, where
then (Mgz7(f)-f(4) = 0.

Here the convention

n(t) = +£1, 4, and T <,

+1-4 =4 and —1-4 == —4 = the complement of 4

is assumed.

The necessary condition (a) for f to have an extension to an m-homo-
morphism is not sufficient, in general. A Boolean m-algebra B is said
to have the strong m-extension property if every mapping f from a set © of
m-generators of an m-algebra U into B, such that (a) holds, can be
extended to an m-homomorphism from 2l into B. It is known (see Sikorski
[6], theorem 34,1) that every m-field of sets has the strong m-extension
property. Hence it follows easily that every m-distributive wnt-algebra
hag the strong m-extension property (Sikorski [8], Sikorgki and Traczyk
[101).

Problem 5. Is every m-algebra with the strong m-extension prop-
erty necessarily m-distributive 2 (P 438). )

Consider now the particular case where the set © of m-generators
of 2 is a subalgebra of 2. Then condition (a) implies that f is a homo-
morphism. Clearly a homomorphism f from & into B satisfies condition
(a) if and only if it satisfies the following condition:

(@) if Nizrd; =0 where 4,66 and T <m, then (M\Epf(4,) =0.

Condition (a’) is necessary for the existence of an m-homomorphism
from ¥ into BV which is an extension of f. However, it is not sufficient.
A Boolean m-algebra B is said to have the weak m-emtension property
if every homomorphism f from a subalgebra & of a Boolean m-algebra 2
into B, such that

(i) S m-generates 2,

(ii) f satisfies (a’),
can be extended to an m-homomorphism from 2 into B.

Clearly the strong m-extension property implies the weak wm-exten-
sion property (therefore every m-distributive m-algebra has the weak
m-extension property) but they are not equivalent. Dubing [1] proved

icm
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that every measure algebra has the weak Ng-extension property. Matthes
[2] proved a more general theorem: every weakly m-distributive Boolean
m-algebra has the weak wm-extension property.

Problem 6. Is every Boolean m-algebra with the weak m-extension
property necessarily weakly m-distributive? (P 439). ’

It is known that it is always m-representable (see Sikorski [9]).

Pierce [3] proved that the m-completion of any m-distributive
Boolean algebra is m-distributive. We mention here the analogous problem
of Traczyk [11]:

Problem 7. Is the m-completion of a weakly m-distributive Boolean
algebra also weakly wm-distributive? (P 433).

Traczyk [11] proved that the answer is affirmative if the algebra
in question satisfies the m-chain condition.

A pair (i, B) is said to be an m-extension of a Boolean algebra 2
provided

(e;) B is a Boolean m-algebra,

(e;) ¢ is an m-isomorphism from ¥ into B,|

(e;) #(A) m-generates B.

If (4, B’) is another m-extension of 2, we write
(%) (2,B) < (¢, V)
if there exists an m-homomorphism kb from B’ onto (= inte) B such
that = i,

Problem 8. Suppose (¢, B) is an m-completion of A. Does inequality
(*) hold for every m-extension (i',B’) of A? (P 440).

This problem was published by me for m = 8, in a purely topologi-
cal formulation in Collogquium Mathematicom 2 (1951), p. 151, P 77.

‘We know only that if (¢, B) is an m-completion of %, then (i, B') <
(4,B) never holds except in the trivial case where (i, B’) is isomorphic to
(4,B) (i.e. there exists an isomorphism % from B’ onto B such that i = 1.

The affirmative solution of Problem 8 will solve automatically
a few similar problems concerning minimal products of Boolean algebras
(for details, see Sikorgki [8] and Sikorski [9]).

Let m and n be infinite cardinals, n < m.

A pair ((i)er, B) is said to be a Boolean (m, n)-product of an indexed
set (2U).r of non-degenerate Boolean algebras provided

(p1) B is a Boolean m-algebra,

(pg) % is an m-isomorphism from 2, into B,

(ps) the union of all the subalgebras 4 (%) m-generates 3,

(ps) the subalgebras i) are n-independent, i.e.

Nt Ay # 0

for Ay #0, 44U, T'<my, T'= T,

i
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An example of an (m, n)-product can be congtructed as follows:

Let X; be the Stone space of A, let ¢, be the Stone isomorphism
of 2, onto the field of all clopen subsets of X;, and let X be the Carte-
gian product of zll the spaces X;. For every A 2y, let gi (4) = the set
of all points in X whose ™ coordinate is in g,(4).

Let § be the smallest field (of subsets of X) containing all the inter-

sections (Mergi (4;), where ;¢ and T < T, T < n. Finally, let (i, B)
be any m-extension of the Boolean algebra &. Then

(**) ((";gr)te’f’ %)
is an (m, n)-product of (er.

Problem 9. Is every (m,n)-product of (per of the form (w)?
(P 441)

T should like also to recall that my problem on principal ideals in
the field of all subsets of a set (Sikorski [5], P 61) is not yet solved.
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A REMARK ON ABSOLUTE-VALUED ALGEBRAS
BY

B. GLEICHGEWICHT (WROCLAW)

An algebra 4 over the real field B is called absolute-valued if it is
a normed space under a multiplicative norm | |, i. e. a norm satisfying,
in addition to the usual requirements, the eondition |@y| == |z||y| for all
x,yeAd (see [1]).

An operation * defined on A is called an tnvolution it it satisties the
following conditions:

(J+ uy)* = de* 4 py™,
ok

* . .
=, a® = atr,  (wy) =yt Y =

for any A, el and x,ye A4 (see [4]).

We say that an involution is non-trivial it it ix different from the
identity operation.

In every absolute-valued algebra A with an involution we can
introduce a new multiplication by means of the formula

2oy = aty.

The algebra 4 with this product will be denoted by # (4). 2 (A) remains
an absolute-valued algebra. The algebra o (4) is called a cracovian alge-
bra generated by A or an algebra induced by involution (see [2], [31).

TurorEM. If A is an absolute-valued algebra with a non-trivial inwn-
lution, then there exists in A& (A) an element e such that

row = e

for wny wex'(4).

Proof. Using the well-known process of embedding linear normed
gpaces in Banach spaces, we can prove that the algebra 4 can be exten-
ded to % complete algebra. Thus, without loss of generality, we may
assume that the algebra 4 is complete. For complete algebras it was
proved in [4] that each element #eA can be represented as a sum & =
= @, a,, where the elements = and x, are self-adjoint and skew respec-
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