24

T. TRACZYK

For every subset $W\subset X$, $\overline{\overline{W}}\leqslant \mathfrak{m}$, and for every $\varphi \epsilon Z$, let $L_{W,\varphi}$ be a subset of Z defined as follows:

$$f \in L_{W, \varphi}$$
 if and only if $f|W = \varphi|W$

(i. e. if $f(x) = \varphi(x)$ for every $x \in W$).

F is the m-field of subsets of Z generated by all the sets $L_{W,\varphi}$. Now we are going to prove that F^n is not weakly m-distributive, if $n \gg m^+$.

Let

$$T(x, \eta) = \{f \in Z : f(x) = \eta\},\,$$

and let

$$A_{\eta} = \{T(x, \eta) : x \in X\}.$$

Every family A_{η} , $\eta \in Y$, \mathfrak{m}^+ -covers F (see [2], p. 139). It follows from the definition of Z that

(i)
$$\bigcap_{\eta \in Y} \bigcup_{x \in X} T(x, \, \eta) = 0,$$

where the intersection and the union are set-theoretical.

Suppose that there exists a covering A of F which \mathfrak{m} -refines every A_{η} . Thus, the field F being \mathfrak{m} -complete, every element of A is included in the set-theoretical union of elements of A_{η} , for every $\eta \in Y$. Therefore it is empty, by (i). Contradiction.

Consequently, by lemma 2.5, F" is not weakly m-distributive.

REFERENCES

[1] S. Banach et C. Kuratowski, Sur une généralisation du problème de la mesure. Fundamenta Mathematicae 14 (1929), p. 127-131.

[2] R. S. Pierce, Distributivity and the normal completion of Boolean algebras, Pacific Journal of Mathematics 8 (1958), p. 133-140.

[3] R. Sikorski, Boolean algebras, Berlin-Göttingen-Heidelberg 1960.

Reçu par la Rédaction le 8, 8, 1962

COLLOQUIUM MATHEMATICUM

VOL. XI

1963

FASC. 1

A FEW PROBLEMS ON BOOLEAN ALGEBRAS

BY

ROMAN SIKORSKI (WARSAW)

The purpose of this short note is to collect a few problems concerning Boolean algebras which seem to be interesting. Some of them were mentioned in my expository paper [7], others were quoted in my book [9]. Perhaps, the level of difficulty of some of them is rather low. In any case, their solutions will mean a progress in the theory of Boolean algebras.

The first problem concerns the following simple theorem: If a Boolean algebra $\mathfrak A$ is $\mathfrak m'$ -complete for every infinite cardinal $\mathfrak m' < \mathfrak m$, A, $A_t \in \mathfrak A$, $A = \bigcup_{t \in T} A_t$ and $\overline{T} \leqslant \mathfrak m$, then there exist elements $B_t \in \mathfrak A$ $(t \in T)$ such that

$$B_t \subset A_t$$
, $B_t \cap B_{t'} = 0$ for $t \neq t'$ and $A = \bigcup_{t \in T} B_t$.

Problem 1. Is this theorem true without the hypothesis that \mathfrak{U} is \mathfrak{m}' -complete for every $\mathfrak{m}' < \mathfrak{m}$? (P 434).

Another problem of this kind is

Problem 2. Find, for every uncountable cardinal \mathfrak{m} , a Boolean \mathfrak{m} -algebra \mathfrak{A} with the property: if the join $\bigcup_{t\in T}A_t$ exists in \mathfrak{A} and $\overline{T}\leqslant \mathfrak{m}$, then there exists a finite subset $T'\subset T$ such that $\bigcup_{t\in T}A_t=\bigcup_{t\in T'}A_t$. (**P 435**).

For $\mathfrak{m}=\aleph_0$ an example of such a Boolean algebra was given by Sierpiński [4].

Problems 3-6 which follow are connected with a classification of Boolean algebras discussed in my paper [7].

Problem 3. Find an example (for every uncountable cardinal m) of a weakly m-distributive Boolean m-algebra which is not m-distributive (P 436).

In the case where $\mathfrak{m}=\aleph_0$ such an example is given by non-atomic measure algebras (i. e. Boolean σ -algebras with a strictly positive finite σ -measure). Other examples can be obtained e. g. by forming the direct

 26

union or the Boolean product of a non-atomic measure algebra and a σ -distributive σ -algebra. Thus the following problem arises:

Problem 4. Construct an example of a non- σ -distributive but weakly σ -distributive Boolean σ -algebra without using measure algebras (**P 437**).

Let $\mathfrak S$ be a set of m-generators of a Boolean m-algebra $\mathfrak A$, and let f be a mapping from $\mathfrak S$ into a Boolean m-algebra $\mathfrak S$. If f can be extended to an m-homomorphism h from $\mathfrak A$ into $\mathfrak S$, then f satisfies the following condition:

(a) if $\bigcap_{t \in T}^{\mathfrak{U}} \eta(t) \cdot A_t = 0$, where $\eta(t) = \pm 1$, $A_t \epsilon \mathfrak{S}$ and $\widetilde{T} \leq \mathfrak{m}$, then $\bigcap_{t \in T}^{\mathfrak{D}} \eta(t) \cdot f(A_t) = 0$.

Here the convention

 $+1 \cdot A = A$ and $-1 \cdot A = -A =$ the complement of A is assumed.

The necessary condition (a) for f to have an extension to an m-homomorphism is not sufficient, in general. A Boolean m-algebra $\mathfrak S$ is said to have the strong m-extension property if every mapping f from a set $\mathfrak S$ of m-generators of an m-algebra $\mathfrak A$ into $\mathfrak S$, such that (a) holds, can be extended to an m-homomorphism from $\mathfrak A$ into $\mathfrak S$. It is known (see Sikorski [6], theorem 34,1) that every m-field of sets has the strong m-extension property. Hence it follows easily that every m-distributive m-algebra has the strong m-extension property (Sikorski [8], Sikorski and Traezyk [10]).

Problem 5. Is every m-algebra with the strong m-extension property necessarily m-distributive? (P 438).

Consider now the particular case where the set \mathfrak{S} of \mathfrak{m} -generators of \mathfrak{U} is a subalgebra of \mathfrak{U} . Then condition (a) implies that f is a homomorphism. Clearly a homomorphism f from \mathfrak{S} into \mathfrak{V} satisfies condition (a) if and only if it satisfies the following condition:

 (\mathfrak{F}') if $\bigcap_{t\in T}^{\mathfrak{A}} A_t = 0$ where $A_t \in \mathfrak{S}$ and $\overline{T} < \mathfrak{m}$, then $\bigcap_{t\in T}^{\mathfrak{B}} f(A_t) = 0$.

Condition (a') is necessary for the existence of an $\mathfrak M$ -homomorphism from $\mathfrak A$ into $\mathfrak B$ which is an extension of f. However, it is not sufficient. A Boolean $\mathfrak M$ -algebra $\mathfrak B$ is said to have the weak $\mathfrak M$ -extension property if every homomorphism f from a subalgebra $\mathfrak S$ of a Boolean $\mathfrak M$ -algebra $\mathfrak A$ into $\mathfrak B$, such that

- (i) S m-generates U,
- (ii) f satisfies (a'),

can be extended to an m-homomorphism from 21 into 23.

Clearly the strong m-extension property implies the weak m-extension property (therefore every m-distributive m-algebra has the weak m-extension property) but they are not equivalent. Dubins [1] proved

that every measure algebra has the weak \aleph_0 -extension property. Matthes [2] proved a more general theorem: every weakly m-distributive Boolean m-algebra has the weak m-extension property.

Problem 6. Is every Boolean m-algebra with the weak m-extension property necessarily weakly m-distributive? (P 439).

It is known that it is always m-representable (see Sikorski [9]). Pierce [3] proved that the m-completion of any m-distributive Boolean algebra is m-distributive. We mention here the analogous problem of Traczyk [11]:

Problem 7. Is the m-completion of a weakly m-distributive Boolean algebra also weakly m-distributive? (P 433).

Traczyk [11] proved that the answer is affirmative if the algebra in question satisfies the m-chain condition.

A pair (i, \mathfrak{B}) is said to be an \mathfrak{m} -extension of a Boolean algebra \mathfrak{U} provided

- (e₁) Is a Boolean m-algebra,
- (e₂) i is an m-isomorphism from U into 3,
- (e₃) $i(\mathfrak{U})$ m-generates \mathfrak{B} .

If (i', \mathfrak{B}') is another m-extension of \mathfrak{A} , we write

$$(i,\mathfrak{B})\leqslant (i',\mathfrak{B}')$$

if there exists an \mathfrak{m} -homomorphism h from \mathfrak{B}' onto (= into) \mathfrak{B} such that i=hi'.

Problem 8. Suppose (i, \mathfrak{B}) is an \mathfrak{m} -completion of \mathfrak{U} . Does inequality (*) hold for every \mathfrak{m} -extension (i', \mathfrak{B}') of \mathfrak{U} ? (P 440).

This problem was published by me for $\mathfrak{m}=\aleph_0$ in a purely topological formulation in Colloquium Mathematicum 2 (1951), p. 151, P 77.

We know only that if (i, \mathfrak{B}) is an \mathfrak{m} -completion of \mathfrak{A} , then $(i', \mathfrak{B}') \leqslant (i, \mathfrak{B})$ never holds except in the trivial case where (i', \mathfrak{B}') is isomorphic to (i, \mathfrak{B}) (i.e. there exists an isomorphism h from \mathfrak{B}' onto \mathfrak{B} such that i = hi').

The affirmative solution of Problem 8 will solve automatically a few similar problems concerning minimal products of Boolean algebras (for details, see Sikorski [8] and Sikorski [9]).

Let \mathfrak{m} and \mathfrak{n} be infinite cardinals, $\mathfrak{n} \leqslant \mathfrak{m}$.

A pair $((i_t)_{t\in T}, \mathfrak{B})$ is said to be a Boolean $(\mathfrak{m}, \mathfrak{n})$ -product of an indexed set $(\mathfrak{A}_t)_{t\in T}$ of non-degenerate Boolean algebras provided

- (p1) 3 is a Boolean m-algebra,
- (p_2) i_t is an m-isomorphism from \mathfrak{U}_t into \mathfrak{V}_t ,
- (p_3) the union of all the subalgebras $i_t(\mathfrak{A}_t)$ m-generates \mathfrak{B} ,
- (p_4) the subalgebras $i_t(\mathfrak{U}_t)$ are n-independent, i. e.

$$\bigcap_{t=T'}^{\mathfrak{F}} i_t(A_t) \neq 0 \quad \text{ for } \quad A_t \neq 0, \ A_t \in \mathfrak{U}_t, \quad \overline{T'} \leqslant \mathfrak{n}, \ T' \subset T.$$

28 R. SIKORSKI

An example of an $(\mathfrak{m},\mathfrak{n})$ -product can be constructed as follows: Let X_t be the Stone space of \mathfrak{A}_t , let g_t be the Stone isomorphism of \mathfrak{A}_t onto the field of all clopen subsets of X_t , and let X be the Cartesian product of all the spaces X_t . For every $A \in \mathfrak{A}_t$, let $g_t^*(A) =$ the set of all points in X whose t^{th} coordinate is in $g_t(A)$.

Let $\mathfrak F$ be the smallest field (of subsets of X) containing all the intersections $\bigcap_{t\in T'}g_t^*(A_t)$, where $A_t\in \mathfrak U_t$ and $T'\subset T$, $\overline T'\leqslant \mathfrak n$. Finally, let $(i,\mathfrak P)$ be any $\mathfrak m$ -extension of the Boolean algebra $\mathfrak F$. Then

$$(**) \qquad \qquad ((ig_t^*)_{t \in T}, \ \mathfrak{V})$$

is an $(\mathfrak{m}, \mathfrak{n})$ -product of $(\mathfrak{U}_t)_{t \in T}$.

Problem 9. Is every $(\mathfrak{m},\mathfrak{n})$ -product of $(\mathfrak{U}_t)_{t\in T}$ of the form (**)? $(\mathbf{P441})$

I should like also to recall that my problem on principal ideals in the field of all subsets of a set (Sikorski [5], P 61) is not yet solved.

REFERENCES

- [1] L. E. Dubins, Generalized random variables, Transactions of the American Mathematical Society 84 (1957), p. 273-309.
- [2] K. Matthes, Über die Ausdehnung von N-Honomorphismen Boolescher Algebren, Zeitschrift für Mathematik, Logik und Grundlagen der Mathematik 6 (1960). p. 97-105; (II) 7 (1961), p. 16-19.
- [3] R. S. Pierce, Distributivity and the normal completion of Boolean algebras. Pacific Journal of Mathematics 8 (1958), p. 113-140.
- [4] W. Sierpiński, Sur les ensembles presque contenus les uns dans les autres, Fundamenta Mathematicae 35 (1948), p. 141-150.
- [5] R. Sikorski, On an unsolved problem from the theory of Boolean algebras. Colloquium Mathematicum 2 (1949), p. 27-29.
 - [6] Boolean algebras, Berlin-Göttingen-Heidelberg 1960.
- [7] Representation and distributivity of Boolean algebras, Colloquium Mathematicum 8 (1961), p. 1-13.
- [8] On extensions and products of Boolean algebras, Fundamenta Mathematicae $53 \,\,$ (1963), p. 99-116.
 - [9] Boolean algebras, second edition, in print.
- [10]— and T. Traczyk, On free products of m-distributive Boolean algebras. Colloquium Mathematicum 11 (1963), p. 13-16.
- [11] T. Traczyk, Minimal extensions of weakly distributive Boolean algebras, ibidem 11 (1963), p. 17-24.

Reçu par la Rédaction le 26. 11. 1962

COLLOQUIUM MATHEMATICUM

VOL. XI 1963 FASC. 1

A REMARK ON ABSOLUTE-VALUED ALGEBRAS

BY

B. GLEICHGEWICHT (WROCŁAW)

An algebra A over the real field R is called absolute-valued if it is a normed space under a multiplicative norm $|\cdot|$, i. e. a norm satisfying, in addition to the usual requirements, the condition |xy| = |x| |y| for all $x, y \in A$ (see [1]).

An operation * defined on A is called an *involution* if it satisfies the following conditions:

$$(\lambda x + \mu y)^* = \lambda x^* + \mu y^*,$$

$$x^{**} = x, \quad xx^* = x^*x, \quad (xy)^* = y^*x^*, \quad |x^*| = |x|$$

for any λ , $\mu \in R$ and x, $y \in A$ (see [4]).

We say that an involution is non-trivial if it is different from the identity operation.

In every absolute-valued algebra A with an involution we can introduce a new multiplication by means of the formula

$$x \circ y = x^*y$$
.

The algebra \mathcal{A} with this product will be denoted by $\mathscr{K}(A)$. $\mathscr{K}(A)$ remains an absolute-valued algebra. The algebra $\mathscr{K}(A)$ is called a cracovian algebra generated by A or an algebra induced by involution (see [2], [3]).

THEOREM. If A is an absolute-valued algebra with a non-trivial involution, then there exists in $\mathcal{K}(A)$ an element e such that

$$x \circ x = |x|^2 e$$

for any $x \in \mathcal{K}(A)$.

Proof. Using the well-known process of embedding linear normed spaces in Banach spaces, we can prove that the algebra A can be extended to a complete algebra. Thus, without loss of generality, we may assume that the algebra A is complete. For complete algebras it was proved in [4] that each element $x \in A$ can be represented as a sum $x = x_1 + x_2$, where the elements x_1 and x_2 are self-adjoint and skew respec-