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INTRODUCTION

1. In 1840 Gauss [7] translated into a mathematical language the
physical law which associates the equilibrium state of electrie charges
with sinking of the potential energy to a minimum. His arguments fell
then under Weierstrass’s criticism banishing them from mathematics,
until a century after Gauss, Frostmann [6] recognized his great idea
setting it free from time-conditioned deficiencies. Thus, modern potential
theory arose to be matured in early 1940’s in the works of Cartan [4, 5]
and Japanese authors (Kametani and others, see [11]).

Cartan introduced the Hilbert space approach to the potential theory.
Precigely, the set & of measures u of finite energy (9.2) is seen to be a pre-
Hilbert space with the scalar product (9.1), energy morm |ju| and the
corresponding strong topology. Cartan succeeded in proving that the
cone &tc & of positive measures iz complete.

2. Now the problem suggests itself to study how other norms and
topologies are related to the above ones. A particularly fine result is
obtained for absolute mass norm (see section 5):

(2.1) [w[(E) < ellpl

for positive u = K (section 4), ¢ being a positive constant depending on K.
The square of the least possible ¢ is called capacity of K.

The proof is a routine one [6]. In the vaguely compact (section 6)
class A, = {u:p < K, u 0, u(K) =1} the energy is vaguely lover
semicontinuous, o min ||| is attained by an ne#,, thus being positive;
if we denote it by 1/e¢, then 1 = |u|(K) < ¢|ul| in ;. Now, the set of all
positive measures is a cone, i. e. it is closed under positive linear combi-
nations, and both the absolute mass and energy-norm are homogeneous;
80, when multiplying # by a positive constant, our last inequality is
generalized to all positive measures.

Colloquium Mathematicum XI. 2. 17
‘


GUEST


258 W. KLEINER

3. When we pass to signed measures, the situation changes deeply.
This is most striking when we look for the literature: it simply does not
exist. All we can find is the negative. The whole space & i3 not complete
(section 9); the absolute mass norm is not continuous, neither in the vague
nor even in the strong topology. The more, inequality (2.1)is no longer true.

Now, the problem we have set up was to give a substitute just to
this inequality. It is clear that the absolute mass is then to be replaced
by some other norm. Bub the simplest — the total mass |u(K)| — must
be refused as the resulting theorem would be useless in the most (if not
exclusively) important case of vanishing total mass. Thus we had to
introduce » new norm (13.3), defined for ¢ = F (I a hipersurface) by
[¢] = sup|o(8)|, where the set S varies in such a manner (13.1) that if
including, say, positive o-masses lying near by the points P, @ it ought
to contain to some extent the negative and positive ones lying ‘‘between”
P and Q. But even with this norm, 1° additional conditions ghould be
imposed on ¢ and in particular on the supporting set F, 2° a Lipschitz
condition (2.1) is not available, but merely a Holder one (Theorem VII).
The get of measures allowed is no longer a cone, so the proofs become
more elaborate,

The lack of interest for problems on signed measures may result
not only of the unpromising look of the field, but of the probable lack
of physical applications. E. g., the situation we bring forth in this paper
roughly corresponds to the following. A sphere (or other regular surface)
is covered with two films S,, S_, their common boundary C being an
insulating thread while S8, and S_ are conductors, perfectly plastic up
to some definite limit. We charge 8, with a charge 4-m respectively and
allow the electrostatic forces to shape 8, and §_ till equilibrium is esta-
blished (Theorems L-IV). If we add the condition of bounded density,
we see our model to belong to genuine fancy physics.

Thus we can expect no interest from physics to our work. But we hope
to find some from mathematics itself — the pure and applied one. When
approximating a measure x by a sequence u, - u, we see the error 4,
= uy—p to be a signed measure — in most cases of mass 0. To study
the degree of convergence, or — in a later perspective — fto give some
numerical estimationg of the accuracy obtained by the n-th step, some
knowledge of the behaviour of signed measures seems to be indispensable.
Examples of such applications will be found in the author’s forthecoming pa-
pers; some of them are announced in a Conference communication (see [9]).

MEASURES

4. Let C, = C,(E) be the clags of all continuous functions on. a lo-
cally compact space E, each vanishing in some neighbourhood of infinity
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(Alexandroff’s point) oo. By a measure ¢ on B we mean a functional
defined for feC, and denoted by [fdo (the integral of f with respect to o)
such that 1° [(af+bg)do = affdo+b fgdo (a,b arbitrary constants,
f5 gCy) and 2° for every compact set K = I there is a constant M — M (K; :
such that |[fdo] < M-max|f| if f vanishes outside K (see [8]).

Linear combinations of measures are defined by

[ fi(ac+bv) = a,ffda—i-bffdr, FeCo.

A measure o is positive if [fdo >0 for f>0; o> if o—1> 0.

The integral is extended to lower semicontinuous and then to “inte-
grable’’ functions. @(2) (zeE) being one of these, an equation like dr=
= pdo means the statement on, or the definition of a measure T, Damely:
[fdr = [fpds (feCy). In particular, when ¢ = ¢, = characteristic fune-
tion of a Borel set 4, the above v is denoted by o|A and called trace
of ¢ on A. [fdo|4 is also denoted by [,fds. The o-measure of A, or
o-mass on A, is defined by o(4) = [41ds — to avoid discussion: for
relatively compact Borel sets A only.

We write ¢ = 4 if ¢ = ¢ | 4; the smallest closed set with this pro-
perty is called the support of o.

5. For every o there exist two Borel sets A4, B such that o | 4 >0,
0|B<0, 0 =0|A4d+0c|B. We write 0|4 =0¢t, —¢|B =o¢~. The
measure |o| = ot 0 is called variation of o, |o|(E) — its total variation
or absolute mass, in contrast to the total mass o(®) (this term was used
in a somewhat different meaning in the Introduction).

6. The vague topology on the linear space M of measures on F is
defined by

op —> ¢ Means ffda,,ﬁ ffdo for all feC,.
BEvery set K(v) of measures satisfying |o| < » is vaguely compact
and so is every set of bounded absolute mass.

7. If a family of functions f(z)<C, is given in the form {f(z, )}y,
then the symbol [f(w, y)do(2) is used to avoid confugion — it means Y
to be fixed and then the integral to be taken, f being now a function of
wel alone. For each pair ¢,7¢ M there exists a unique measure o®v
on BxEH such that

(11) [flo,9)do®7 = [{[f(o, pac@}iry) = [{ [f(@,y)dx()}do0)

for all f(w, y)eCy(BXH). This equation is then generalized to all inte-
grable functions (Fubini’s Theorem). Let us point to the equality

(7.2) 0®r =0"@1" " @ —0" @1t + 0" ®1T;
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the o @ v-integrability of f means the integrability of both + = max{0, bl
and f~ = f* —f with respect to four measures on the right side of (7.2).

°

POTENTIAL AND ENEERGY

8. Let B = R" be the N-dimensional Oartesian linear space of points
% = [#, ..., ®N], % real numbers, with the usual norm 1w|.= (4. ..
%) With each o¢ M we associate its Newton’s potential
(8.1) U(2) = [lo—yl*~Vdoy,
provided it is well-defined for each », the values 4 oo allowed. It is super-
harmonie if o> 0. In the sequel we allow signed ¢, but we limit ourselves
to the case of ¢ — K, K being a relatively compact set. Then U’ is har-
monic outside the closure K. It is said regular at the Alewandroff’s im-
findty oo if and only if |2[Y~|grad U°(z)] — 0 a8 & — oo [12]; this is pre-
cisely the case if ¢(K) = 0. Then the limit U°(eco) = 0 is never an upper
nor lower bound for U° in any neighbourhood of infinity — thus, the
maximum principle is valid even in domains containing oco.

9. Let o, 7e M; we putb
(0,0 % [U° dv = [Udo = (v, 0),

llol = (o, o).

(9.1)
(9.2)

Let & be the set of measures ¢ with both [jo*|* < oo and |jo”|? < oo;
then ||of® is well-defined, as is (o, 7) for ¢,ved; the second equality in
(9.1) is then certainly true in virtue of Fubini’s Theorem. For ¢ or T not
belonging to & we leave off the discussion of (9.1).

If we observe that the energy |o| is strictly positive whenever
o550 ([14], p. 6), & appears to be a pre-Hilbert space with the inner
product (9.1), called mutual energy of o and 7. The positive cone &t
= {o:0ed, 0 > 0} is complete in the norm || | [3]. On the contrary,
& itgelf is incomplete. We reproduce a gimple example of Cartan. Let,
in R, uif, uix be the uniform distributions of a charge 1 on the spheres
o] =1—4""* and |#| = 1, respectively. Then the energy of u, = pif — ui
is (4*—1)"", so Z|uy| converges, while oy = ...+, has no limit.
Indeed, let o — o strongly, whence vaguely ([4], Prop. 4). Take a positive
Jo(2) €€y with f(a) =1 for |o] <1—479 f(#) =0 for |z| > 1. We have
[fado = [fydog = g, so condition 2° of the section 4 is violated.

MAJORIZED MEASURES ON REGULAR SURFACR

10. For the sake of simplicity we take N = 3 from now on. The results,
with obvious modifications, are valid for any ¥ > 3. A few remarks con-
¢erning this generalization are given in section 20,

©
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Let F = R® be a compact surface (2-dimensional triangulable ma-
nifold) of clags (*. In particular, F' has no double point, i. e, every meF
is contained in a set 4, open in R, with 7 ~ 4 homeomorph to a domain
in R?. We prepare for later use:

1° two constants ¢, ¢, > 0 such that for #yeF and r < diamF the
area of F(2,7) =F ~ {&: |[p—n,) < r} satisfies the inequalities ort
< |F (20, 7)] < ea?,

2° a 6, > 0 such that for any r < 6, and 2, F, the set F(z,, r) is
a connected one. The constants in question exist because of F being
smooth and compact: the proof may be left to the reader.

When operating on F, we shall use the topology on F induced from R*:
a subset A of B will be said open, if it is an intersection of F with an open
set in R'. Setting for any sets 4, B: A—B — {#:wed, x¢B}, we put 4’
=TF—4 and 04 = A~ ~ (4")” for A < F'; A~ means the closure. The
distance o(4, B) = inf{ls—y|: vcd, yeB}. We write ¢(xz, B) instead
of o({#}, B).

11. Let » ¢ F be a positive measure =0 with continuous poten-
tial, and

(11.1) K@) = {o:0eM, o] <}

the class of measures o < F majorized by v. K(v) is vaguely compact
([11, II1§ 2, Corr. 1 to Prop. 9).

LemmMa 1. Hvery oeK(v) has a continuous polential.

Proof. +U° =0U"*"—T"; as v+£o >0, U° and —U° are lower
semicontinuous (section 8).

Lemwa 2. |lo|* is @ continuous function of o if considered for oK (v).

Proof. Let o,e¢K(v), 0, 0; then (section 7) ¢,®0, = o®c ([11,
IIX § 5, Prop. 4). Put f(r, 8) equal to 7~* for re<0, 85, 0 for re{28, oo,
linear in (8, 28, and g(r, 8) = +~'—f(r, 6). With any & > 0 and suitable
é >0,

| [1(o—yl, 9d0.8a| < [ fla—y], )dr@r <,

since f < [w—y|~ which is y®v-sumamable and f->0 with § — 0. The
same inequality holds for o. By section 6, |fg(lo—y|, 6)do,® op—

~J g(lw—yl|, 6)do®c | < ¢ for great n — and for such an n, | [l — [joi}]
< 3e.

12. v may not be absolutely continuous with respect to the area
on F, but more than mere continuity can be proved. Put for 4 = F

(12.1) A = {n: 1<F, o(x, 4) < 8},
(12.2) w(d;v,1) = sup{r(60): |0 <1},
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where the upper bound has to be taken for all continuous curves ¢ = I
of finite length |C| <.

LEMMA 3. w(d;v,1)—>0 as 6~ 0.

Proof. Assume on the contrary that 8, — 0 and w(d,;7,1) > a > 0;
this implies the existence of rectifiable curves O, of lengths <1 with
»(6,0y) > a. Let us represent C, as contractive images of a segment @ =
=<0,0, i.e. .

(12.3) Cu: @ = @u(u), |on () —n (u*)] < lu—w*[,  ®, u*e@Q.

@y, are equicontinuous and ¢ is compact, so an uniformly convergent
subsequence can be drawn — we denote it again by ¢, 80 (pn.:: 9. By
(12.3) @ represents a rectifiable curve 0. Its capacity (%) capC is known
to be 0, 50 to any e >0 a 6 > 0 can be given such that cap(d0)” <e.
Then »((8C)~)* <e[»|f. But by the uniform convergence 8,0y, < .60
for great m, thus a* < »(8,0,)" < »(80)* < e|p|f, e being arbitrary, which
leads to a confradiction.

A more precise statement is given by Lemma 8.

THE NOREM [o]

13. Let K be a disk in the [u;, u,] = u-plane: K = {u: |u| < Ry},
C(K) the metric space of all continuous mappings v of K into F with
Techebycheff’s distance

ipr—all = max {|y; (w) —ps (w)|: we K},

7 ’

2

Lz

7

Fig. 1. Typical forms of SeL.

and @, « C(K) the class of all contractive one-to-one mappings of K
into . A mapping v is called contractive if |yp(u)— v (u*)| < |u—u"*| whe-
never defined.

(1) The capacity of a compact set K is 0, if 4 ¢ K with ||u|? < oo implies u = 0.
Otherwise, cap K = inf{c: u(K)? < ollu|® for all u c K} - equivalently to [5],
where all we need about capacity can be found.
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Let @ be the closure of @, in O(X). We call the mappings in & con-
tractively nearly one-to-one. By the theorem of Ascoli ([2], X, § 4, théo-
réme 1) @ is a compact metric space.

It would be interesting to know whether a contractive mapping
¢: K — F, approximable in norm by one-to-one mappings, belongs ne-
cessarily to @ or not (P 450). .

Consider the class I of images of K under &:

(13.1) L ={8:8 =¢(K), peD}.
With Fréchet’s distance
e(81, ) = inf{llps —@ull: ;e @, wi(K)=8; (¢ =1, 2)}
L becomes a compact metric space. This is easily seen when copying
on L the coverings of @. Now, we assume R, to be such a number that
FeL. This is done for purely aesthetical reasons — the theory will do

with any fixed B, >0 — so we omit the existence proof,
For an § = ¢(K), ¢e®, we define its contour CS by

08 = p(3K).

It is a continuous rectifiable (althought not necessarily Jordan) curve
of length (0S| <1, = 2=R,. For fixed 8, 08 is not unique — it depends
on ¢. In what follows, we will always mean by CS a concretely chosen
contour.

8 and 08 are obviously closed sets.

We have 08 = C8. Indeed, let @, = p(u,)edS—08. Let ¢,e®,,
llpn—@l|l = 0. Take a connected open neighbourhood B of #, in F, with
B~ ~ 08 void. There is an yeB—g8; the last set being open, it containg
a closed neighbourhood of y. Then, for » sufficiently great, 1° ¢,(u) # ¥
(ueK), 2° ¢,(0K) ~ B~ is void, 3° @, = @n(t,) eB. When connecting x,
to y by an are¢ L < B, we see that L has to meet dp,(K) = ¢,(0K) (pn
is a topological mapping!), contrary to 2° (2).

Moreover,

(18.2)  8,—8, = 808, = 808, provided Sy, 8yeL, o(8y,8) < 8.
Indeed, 8, = 88, = 608, v 8, < (608, v ;) and (13.2) follows.

One could alternatively define I as the class of all sets §C F such that 88
may be covered by a curve of length < Iy. The proofs become then more elaborate,
but the class L is then closed under forming complements, an advantageous property
bringing more symmetry in the theory (see e. g. Theorem II).

Now, we define for ¢ <« F
(13.8) To] = sup {|o(8)]: SeL}.

(%) We are gratefull to Mr. J. Siciak, whose friendly criticism induced us to
improve the formulation of this proof.
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This is a norm: [ao+br] < |¢|[o]+ [b][7] — and [o] =0 for ¢ =0
only. Indeed, it is sufficient to show that [o] = 0 implies f fdo = 0 for f
continuous vanishing outside a small ball B with centre on F, such func-
tions forming an uniform base in Co(F) and the behaviour of f outside ¥
being of no importance. Now, given an ¢ > 0 cover F ~ B by a finite
number of disjoint small sets S;eL (%) with M;—m; <&, M; resp. m;
denoting the npper resp. lower bound for f on §;, and estimate

[fas = Y [fa(o|8) < D {Mio* (8)—mio (8}
= D' (My—my) ot (8) +myo (8) < eo™ (F).

Letting & — 0 we obtain for all continuous functions f fdo <0 —
and then [fdo > 0, since Co(F) is a linear space.

LeMMA 4. In K(»), the vague comvergence is wniform on L, i.e. if
OneK (v), 0, = 0, then to any &>0 there exists an N such that |o,(8)
—o(8) <& (8eL,n = N).

Proof. Let & > 0. Choose a 6 > 0 such that w(d; », 1) < e (lemma 3)
and take a partition of unity 1 = > ¢;(») (2<F), where ¢; are positive

i=1

continuous and each support F; = {x: ¢; > 0}~ is of diameter < 4. Put
them in such an order that Fy, ..., ¥y, = 8, Fy, ..., F = 608, Fpyy ...,
F, = 8, SeL being arbitrarily fixed. Then

| [a(oa—0)| < |§f¢id(aﬂ—a)\ + i’:\f%d{m—a)[&]
s i=1 =

(4
< Iﬁrstsum|+2fzp,;d2v < |firstsum| - 2¢,
%

D
since 0 <giy 3o <1 and »(608) < e. There exist an N such that
k

Jed(on—o)| <efr (=N, i=1,...,7), thus Lfvl(an—a)l < 8c (n = N),
g.e.d.

LEMMA B. [o] 48 a continuous function of o if considered for oeK ().

Proof. With ¢,, ¢ and N as above, ||o,(S)|—|o(8)|| < 3¢} (n= N,
SeIL) which implies |[o,]— [¢]] < 3.

Remark. [¢] is not continuous in general circumstances. Let o,
< {7, 7}, on{wi}= &1, where i ¢ F, 2 — x,. Then o, — 0, bub [oy,]= 1.

LeyMA 6. For ceK (v), the bound [o] is an actual mewimum: |o(S,)|
= [¢] for an S,eL.

(3) Just to make obvious this possibility F has heen replaced by F ~ B which
can be regarded arbitrarily flat.
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Proof. L being compact, it is sufficient to show that for oeK(»),
o(8) is a continuous function on L. Indeed, given an & > 0 take a 8 > 0
with w(d;7,%) <3¢ (h =2nR) (Lemma 3). Let (8, 8;) < 6, then
with 4 = 8; ~ 8,

lo(81)—0(8s)] = lo(8—4)+0(4)—0(8,—A4)—o(4)]
<v(8—A4)+»(8.—4) < e,
since e.g. »(8,—4) =¥(8,—8,) <v(808,) < ¥¢ by (13.2) and (12.2).
Levma 7. To any feC*(F), i.e. to any f defined on F and of class

C* with respect to local coordinates on F, there ewists a constamt M, such
that for every o = F we have

(18.4) 1 [ fda' < [01M;.
In particular, for x¢F we have
(13.5) |07 ()} < [0]M (2),

where M (x) is a continuous function of weR*—F.

Remark. We do not suppose oK (v).

Proof. Take a finite triangulation of F, correcting it if necessary
50 a8 to obtain (*-sides and positive angles. Break each triangle in 3 qua-
drilaterals and cut them up again and again, but look after the regularity
mentioned above. Thus a partition of F into disjoint semi-closed qua-
drilaterals F; can be obtained with the following properties:

N
1°F = JF, (¥ < oo),
i=1

2° F; is a rectifiable Jordan curve, divided by four distinguished
points (vertices) in four C*-arcs (sides); if any two sides meet at a vertex,
they form there an angle always > a > 0, a depending on the partition
but not on 4,

3° ﬁi I f‘,a is either void, or a common vertex, or a whole common
side of F;, Iy (¢ # k),
4° any two tangent planes to F; form an angle < /4 and, moreover,
diam F; < cos /4.
' By projection on the tangent plane we can show that on each F
regular contractive curvilinear coordinates [, v]e@ can be given — pre-
cisely, F; can be represented by

Fi: o = o (u,v) ([u, v]eQ = <0,1)x<0,1)) (i=1,..., ),

where qoi is defined and «C* in some square @* = (—r,14-7dX (-7,
147> (r>0) and maps it into F in a contractive one-to-one way —
ie. |¢'(u, v)—¢'(u*, v*)| < |[%, v]—[%*, v*]| whenever defined.
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Let us assume By>1 /l/ 2 (see the first lines of this section; we can
do without this assumption, taking @ = <0, R,¥2>x <0, RB,V/2> instead
of that above). Then any rectangle §* < @ can be represented a8 an image
of K by a contractive one-to-one mapping ¢. 8o § = ¢'(8*) = ¢*(y(K)) <L,
since p'op is a contractive one-to-one mapping. Put for [u, v]e Q*

Fu, ) = flo' (u, ) when proving (13.4),
fiw,v) = |&—¢*(u, v)|"! when proving (13.5),
and denote by ¢° = Q the projection of o | F; on @, defined by

fgua;

for all g continuous in ¢, where y means the mapping inverse to @' Let
us estimate [f'do".

The h-averaging of a meagure v in the [u,v]-plane consists in re-
placing 7 by 7, with

fg (x)) do

w(B) = B[ [v(B+[p, ¢)dpdg,
R

where  E+[p, q] = {[§, 9]: [§—p, n—qleB}, R ={p,ql: lp|<h
lgl < B}, |R| = 4h%, b >0, and dpdg denotes the integration with res-
pect to (Lebesgue) area. Put, as in the theory of probability,

ey v) = 7(Qu),

(13.6) b (u,

Quvp = (—o0, U)X (—o0, v,

) = | RI“fft (u+p, v+q)dpdg
= B! {3 [ % (@u+ [P, ¢1)dp dg = 14 (Quo) -

Suppose now that = has a finite absolute mass (see section B).
Then ?,, the h-average of ¢, is continuous, since # is bounded (by
& transformation as in (13.8)). Moreover,

(18.7) sup |t < sup 4.

The averaging may be iterated, e. g.

1 h
(13.8) * t(w, 0) (s = B [dp [tu(utp,v+qgidg
~h —h

u+h v-Rh

=B [ dp' [ wlp,q)dg.
u—h v—-h
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The last formula shows the existence of a continuous derivative
8%ty /0udv, which is the density of (). Indeed,

b d
[ @u [ (8% [0udv)do = (mah((a, b X (¢, &)

(by (18.6) with 7, on the place of ).

On the other hand, let g(u, v)eCy(R?). To any & > 0, choose a § >0
guch that |g(u,v)—gu',v)| <e provided |u—u|<<s, [v—0v'|<$é.
With 2h < & we obtain |[gd(za)s— [gdv| < ¢ |7](G), where G is the
compact seb outsnie of which g=0. So, (z)p—>7 (b — 0) (see e. g. [13]).

Write o™ (Ul/n for » satlsfylng 1/n <r; we allow from now
on only such values for n. Then ¢® < Q* vanishes near its boundary
and ¢ — ¢*. Put

s’in(u, V) = ‘Tm(qu):
and observe that
(13.9)

§(u, v) = 6" (Quo)

SuPISil = sup |’ (8% <[o], §™eC'(Q), do™ = siydudn,

(the seeond upper bound is taken for all rectangles 8* = @; u, v as indices

denote differentiation).. The inequality results from the fact that o (8*)eL.

For  or v near to —r we have s = 0, so integration by parts yields

142

ffsﬂwdudv = fs"™ (147, 14+r)— f Fus™ (6, 14+ 7)du—

142

— [ £ @r, o) @0t [f funs™ (, 0)dudo
-1 Q*

(fuoS™ (4, ) TeADS fup (4, v)s™(u, v) and so on). Thus with

147

(1810) M = [f(1+7, 140+ [ |fulu, 147)|dut

147

j Ifl+4r,v) |dv+ff|fm,ldudv
we have -

e <00

by applying (13.7) twice to obtain the second inequality, and then
(13.9) for the last one.
Letting n — co we see that

Ufidai

< Mymax|s™] < Min%a]x[s | <
Ql

< M;[o].
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N
So our lemma is established with M = }'M;, which is easily seen
=1

(in the case of proving (13.5)) to depend on # in a continuous way.
Our proof gives rise to a new definition of the total variation (which
meets Hardy’s definition of a function of bounded variation, see e.g.
[10]) establishing a duality between it and a somewhat modified Tche-
bycheff’s norm. We will devote another paper to consider this in detail.

EQUILIBRIUM THEORY

14. We shall now be concerned with the class of measures
K(v,m) =K@ ~ {o:[0c] =m, o(F) = 0}.

(see (11.1), (13.3), (13.1)). It is vaguely compact, the last set being closed

in K(v) and K(») compact; we suppose 0 < m < sup{min(»(8), »(8)):

S8eL}, so K(y, m) is non-void. By Lemma 2 we have at once
THEOREM I. There is a minimal measure aeK (v, m):

o <llol*  (ceXK (v, m)).

Let us study now to what extent o has the familiar properties of
classical equilibrium distribution.

The minimal measure may not be unique. In what follows we mean
by a any concrete one.

TerorEM IT (neutralization theorem). There is either an 8, = S, (a)eL
such that

(141) a(8y) =[al =m and a >0 on 8,, a <0 on 8. = (8.),

or an 8y = 8, (—a) such that (14.1) is satisfied by —a.

By a >0 on 8, we mean a|S§, > 0.

Proof. There is, by Lemma 6, an §, <L with [a(8)} = [a]. Sup-
pose a(8,) > 0, and, this being so, set §, = §_. (¢} (in the case of —a(8,)>
>0 set 8, = 8,(—a) and substitute the minimal meagure —a for a
in what follows). [a] = m, otherwise m[a] 'aeX (v, m) while its energy
is m[a] ol < o|f".

Let B* = K (v, m)~{o: 020 0n 8,,0<0on §_} be the (non-void)
clags of measures already satisfying the inequalities (14.1). It is compact
by the argument given above. Let f<E* be minimal: |2 < [lo]f (ocK*).
Now, U? being continuous in the whole space (Lemma 1) and regular
at the infinity (see section 8), we have

(14_2) at

~oo <0 L inilP(n) < 0 < supUP(a) & ¥ < oo,
@ @
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‘We use the following theorem, postponing its demonstration to the
section 15:

TarorREM IIT (saturation theorem). We have
Ulw) =V (0e8,—B,), Ulw) =v (weS_—H_),
the exceptional sets being saturated:
B(E,) = +v(B,).
Put o = f+ 1, then

T<O0omE, 7200 B, z(8,)=18)=0

and the integrals of UPdr satisty the inequalities:

[ = vem,), [ =vus,—5,),

Ey Sy HE,
f > vr(E_), f =vr(S_—E_).
B S_—-E_

Summing up we geb (8,7) >0 (see (9.1)), so
lal = [18IF 42 (8, ©)+ izl = B

with equality only when ¢ = 0. But this is just the case, since K* = K (v, m)
implies Jla/f* < [IBIF. So a = § and the proof of (14.1) is achieved.

15. We proceed now to prove theorem IIL.

B, and E_ are y- and f-measurable as intersections of S, with open
sets. Suppose v(H,)—f(H,) >0 and put B, = {z: <(8.)", U%(z) < V—s};
this is a compact set. With some e<(0, V), we have a = v(&,)— §(E,) >0.
Secondly, b = p(8,—H,) >0 — if not, U would be subharmonic in
R*—H,, continuous in R’, regular harmonic at the infinity, and < V—e
on F,, thus everywhere — a contradiction with (14.2). Define now v = 8,
by

dv(®) = adf(r) =0 (veS,—E,),
dr(s) = —bd(v—pB)(x) <O (zeh,).
Then
B, 7)) = [Ulir+ [ Ulda
H, SL2E,

> (V—e)t(B,)+(V—e)z(8,.—E,) =0,

since 7(8,) = 0. The strong inequality results from the fact that S, —B,,
containg a positive - (and z-) mass, by the same reagoning as above.
For small ¢ > 0, we have f—ireK* and

18—l = [IBI*—2¢(8, =)+ llel* < lIBI*,
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contrary to the minimal character of f. The second part of the theorem
is proved in a symmetrical way.

16. TEmoREM IV (filling up theorem). The support of a= f is the
whole support of ».

Proof. We show e. g. that the support of g contains that of » | 8, .
Otherwise, there would be an @S, on the support of v | 8, but not on
that of p*, and consequently a small open ball B, with centre x, and
rectifiable B, ~ F such that 7 (B) =0, »(B) >0 (B =B~ 8, —088,)
(the cancelling of 88, is legitimate, since v(98,) = 0 — see Lc{amma 3).
B lies then in the open region of harmonicity of U*. By Lemma 3, we can
fix & 8 > 0 with »(50B) < 4»(B). Then, by the harmonicity mentioned,
9¢ = V—sup{U’():0eB—00B} > 0. We have a = »(B—50B) >0 and
b = (8. —B,) >0, where E, i8 defined and the inequality established
a8 in section 15 Put

dv(z) = odf () >0 (weS,—H,), dr(z) = —bdv(w) <0 (weB—380B),

for other @, dr(s) = 0. From now on the proof runs like the preceding
one. .
THEOREM V (uniqueness theorem). Two minimal measures in K.(v,'m)
coincide provided the supports of their positive (or negative) paris coincide.

Prootf. Let o, a, be two minimal measures in K (v, m) a;x;d the sup-
ports of of, ai be identical. By Theorem IV, §,(a) = (support of
af) v N = (support of aff) w4, where 4 < F—(support of ?). He]}ce
4, >0 on 8, (a) and o(S,(m)) = of (F) = m, the last equation being
valid by Theorem I for any minimal meagure. So we can put'»S’+ (ay)
= 8, (e;) and substitute § = &, @ = a; in the lagt part of section 14.

Generally, there are many minimal meagures in K(»,m). E.g,
F being a sphere and » = const. X area, each minimal measure produces
other ones by rotations. We put the following problem, which seems
rather difficult (contrary to that from section 13):

P 451. Characterize the pairs (F, ) such that, for suificiently small
m, there exists only one minimal measure in K(», m) — or, show that no
such F and » exist.

ESTIMATION OF [¢] IN TERMS OF |o|

17. Our task is now to estimate the energy [lo|* from below in K (v, m),
i. e. in K(») in terms of [¢]. All constants below depend on F only, except-
ing m, which depends also on ». Define the “inverse function” to
(12.2) by

(17.1) o M e;9,0) =sup{d: w(d;v,L) e} (e>0).

icm
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™" goes to O with & (otherwise » = 0 in each small set which implies
v =0), so there is an m; >0 such that 45 o™ (Im; v, L) < 8, for
0 < m < m, (see section 10). We fix such an m and the corresponding &
and prepare a finite partition of F in disjoint sets F, -y Fy, each con-
tained in a ball B; = {s: |#— ;| < 8} (z;¢F;). The number N, depends
on 6, but it is easily seen that we can always have N, < ¢3/8* with constant
¢ (& proof can be based on partitions of @ as in the proof of Lemma 7).

Let a be a fixed minimal measure in K (v, m). We change the order
of the Fy’s 80 as to have, with some n <N,

n
B =8,(a) =Av UF;, A=(8,) (4508, Ff=F—4
=1
(see (12.1)).
Put (see section 4)

o =ald 20, g, =a|Ff >0 (=1,...

The idea of our present consideration is the following. The danger
that [|af will be small consists in the tendency of positive masses to draw
near the negatives (and vice versa), which makes a, relatively large.
Controlling this phenomenon is just the object of »-majoration. In fact,
this enables us, after separating the contributions of each a;, to neglect
that of ¢, — thanks to § being so small as to cause a,(4) < $[«], Then
we may estimate the contributions of oy, ..., a, thanks to their distance
from negative masses being bounded away from 0. For concrete F, this
could often be done by direct estimation of the integral. We have chosen
an eagier way. It seems somewhat prodigal, but the example of a spherical
condenser shows the order of the estimate for m — 0 to be sharp.

In fact, let G be the unit sphere, H the concentric sphere of ra-
dius 1446, 0" =@, 0~ = H with ot (¢) = ¢~ (H) = m. Then we have
the gharp estimation o] > m*(1—(1+46)7") ~ 46m? (obtained as in
the last part of the proof we begin), while by partition of @ analogous
to the above one and by the method of our proof we obtain |o|® > const.
om?.

Let us form a surface P = 0B, B = {s: 2<R®, o(x, 8, —4) < 45}.
Observe that 08, ~ B = 0. We do not prove that P is really a surface,
gince we shall use only 1° its (obvious) compactness, 2° its property of
separating Fj, ..., Fy from S8_. Let us prove the last property. If it
would not hold good, then an x_eS_ ougth to lie in ¥ and thus in some
ball B = {&: |[v—=,| < 46}, 2,8, —A. Now, 48 < &, hence F~ B is
connected (see gection 10) and #_, @, can be joined in F~B c F A B
by an are J. But J must then cut 48, , contrary to J < E.
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Put else oy = a, | A ~ E". To each «; there exists ({8}, n* 8-10)
a positive measure §; < P* =P v (F—E) of finite energy with the fol-
lowing properties:

(17.2) Bi(P*) = mi = ai(84),
(17.3) loa— Bill < llez— 7] for all = = P* with ©(P*) = m;,
(17.4) Ufi(e) < U%(x) (veR), Ufi(w) = U%(2) (veP*—Py),

P; being a set of interior capacity null, i. e. negligible for every meagure
of finite energy — in particular f,(P;) =0 (¢, %k = 0,1, n). We gay
that B; is obtained by balayage of o; onto P*, Balayage is a hnear opelatmn,
this appears from the condition (17.4) which characterizes the balayed
meagure completely ([6], n° 12).

‘We prove (17.2), since the reader will not find this well-known equa-
tion explicitly in [5]. Let x be the capacitary distribution (see after
(19.2)) on K = B ~ P* Then §;(K f 1dB; = [ U df; = (B, 1) = (ai, p)

= o;(K), since x| EF =0 and (17. 4:) holds
Now, (17.4) implies
(17.5)

(61— iy x— i) = [ U Piday— [ U Piag, > 0.
S+

Pslp;

Put ag =al|8, ~n B Z‘% The balayage of ar onto P* gives

i=0
a meagure f = Zﬂ, By (17.2-3), B(P*) = ag(8, ~ E~) and ||f— az|

<|lr— ag| for all rcP* with 7(P*) = ag(8, ~E~). Then v = ag—a=
= —a | F—F is an admissible measure and we have, by (17.3-5),

@76) ol = loz—(ar—a)lf > lon—pI = | 2(01 gl

i=0

= 3> Y u—pilf
=k qel

(just in the last sum o, is definitively eliminated).

We estimate now |lo;— fil>. Put K, = 0B; (defined at the beginning
of this section), K_ = 0B}, Bf = {#: |o—a;| > 46}. Let ¢ < K-w o < K_
be obtained by balaying the mass m, from the centre x;, 1. e. let these
measures be of constant density with respect to area, each of mass m;.
With ¢ = ¢*—0¢~ we have U° = m;(6™"—(40)") = 3m;/46 in B; and
U? =0 in B}. On the other hand, o;— o* < By, 0™ —B; c B}, whereas

Z (05— Biy ax— Br)

i,k=0

icm®
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their total masses are 0, whence the integrals of U° with respect to those
measures vanish:

los—Bill* = llo— (0¥ — s+ fi— o™ |

= llol~2 [ T°a{(c* — o)+ (Bi— ™)} + o — (s — Bo)|!

3 mg
Tas
Putting this together with (17.6) we obtain

m 2
n(%) =0, 48-m°
n

because of >'m; > {m, m; >0, and of n <N,
1

> |lofP

5 3 2>3

flell” > PEREEYy

==
< 6)8
part of this proof). In view of a being minimal in K (v, m) we have the
following

TaroreM VI. Let F' and v satisfy the conditions of sections 10 and 11.
Then for any o <K (v) with [o] <m, and o(F) = 0 we have
(17.7) lol* = es[oT0™ (§[0]; 7, ),

where ¢, > 0 and l, depend on F but not on v (nor o), and my depends
on F and ».

(see the initial

Remarks. Our considerations were done with m = [a] < my, but
if m>my, K{v,m) c K(v, m), so with a larger ¢; = }cj»(F)my* (now
depending on v) (17.7) holds in the whole K ().

The condition Fe¢0® may be weakened. ¥ need not be a connected
surface — it could be a finite union of disjoint ¢? surfaces as well. We
may even allow these surfaces to intersect but they must not be mutually

tangent. Precisely, we allow F = UP“ where 1° each P; is a compact

surface element of clags (%, 2° the angle formed by P; and Py (i 5= k)
at each common point lies between 6 and =— 0, 6 being a fixed positive
number. Some additional care iy then needed, especia.lly in proving Theo-
rem VI, nevertheless all theorems excepting IV (which fails if a P; sur-
rounds another) are valid on such an F.

18. To elucidate the influence of w™' on (17.7) let us examine the
case of an » of bounded density: »(B) < g*|B| for Borel sets B < F, or
the more general one of an » satisfying with some ae(0,1), ge(0, o)
the inequality
(18.1) w(d; v, h) <gé® (8 ).

Colloguium Mathematicum XI. 2. 18
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The former case is that of ¢ = 1, gince [60] < ¢;6 (¢; = positive
constant), if the length |0] <7,. To see this, divide € by points zy, @, ...
..., B = @, into & arcs of lengths < 28; to this purpose, k = [1,/26]+1
is sufficient. When taking an z<dC, going to t]he nearest point 4’0 and

e

from &' to the nearest @;, we see that 6C = iUF(mi, 24), thus {60] < ¢,
=1

o5 = ko, 48 < 661y for 8 <7y (consult sections 10 and 12 for motations
and for eliminating, if desired, the limitation on 6). (18.1) implies

w7 (g5 9, 1) = g%,

thus (17.7) becomes: |jo|f = cs[oT!*, ¢ = ¢,(2¢)™"*. When o =1, we
get a particularly simple
TesorEM VIL. If I satisfies the conditions either of section 10 or of 17
and 0 < »(B) < g|B|, where |B| is the area of an arbitrary Borel set Bl < F
and v a measure supported by F, then
[oF <cglol  (¢* = 2¢s/ey)
for any ceR(v) with ||o|* < b =mic,/290; and o(F)=0. The constants
¢4, 65>0 depend on F only; my can be put equal to 2¢;95, (see section 10).
To complete the above proof observe that 1° if »*(B) = g|H| then its
potential is continuous [8] and, by Lemma 1, so is that of »; 2°if flolf < b,
ceE(») and [¢] = m > m,, then ¢* = mem™ oK (v, m;), whence — by
Theorem VI — [mgm ol > c,mim,(2gcs and [o]® > b; thus o] <b
implies [0] < m, in the present circumstances.

19. An explicit theorem is also available in general circumstances.
It depends on the following

LEmMA 8. capd0 < ciflogl/s (|0|<ly, 6K 6%), where ¢y and 8* >0
depend on F and 1, only (see (12.1)).

Proof. Represent O as a contractive image of the circle K = {[u,, %,]:
uit+u; = B3} of the [u, 4] = u-plane (B, = 4[2xn), Le. C:a =qu)
with |p(u) — @ (u*)| < ju—u*| (u,u*<K). Define the “centres” o’ of sets
F' = F(a*, 8) = F ~ {: |o—2" < 6} by induction as follows. Take any
#eC. & F, ..., F* are defined, then choose any g,,e(—I"—...—F*
if such a point exists; otherwise the construction is ended, and this must
be the case for a finite & = %" — to see this, cover R* with cubes of dia-
meter < 6 and observe that none contains two points ', a® (¢ # k) of

our sequence. Put F' = F(s', 28), By = F(a",28)—F'—...—F". We
have

. k’
(19.1) F—a® |28 (<k=2,..,F), 6 < B

k=1
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Let o° = ¢(u"). Then |u'—u*| > 8. Take a circle in the 2y, Uy-plane:
{w: [u] = 9By}, and fransport each F (2", 26) (so each E¥) by a rigid mo-
twnk — denoting it by « — into the u,, u,, u,-space so as o¥ = 9u* and
F(z", 2'5)* begomps ’Ecang:nt t‘f the u,, u,-plane at this point. Consider now
two_ pou_xts Y e, y'eB". It { =k, their distance is unaltered. If ¢ ==k
then‘i dlitanee before moving was |yf—y*| <r*F a8 @ = [mi—wki
< %_u ); mow, in the wu-space, |yi—y¥| > |9u'—9u*|—46 > 9% _48
= 444 by (19.1). So all distances are increased, whence

cap 60 < cap|JE* < cap| J BE.

Let H* be the orthogonal projection of E* on the %y Up-plane. If

&* was ta.k(;,cn small enough, the angle between the last and any tangent
plane to B, is <=3, so

cap U B < 2¢ap UH* < 2¢capR,

where .R o> UH" is the plane annulus 9B, —26 < |u| < 9R,4-246. Observe
that B is a contractive image of the strip 7* = <0, 46> x 0,1 (Z =2 (9+
+20)), whence capR < cap T (%).

I;et 7 < T% dv, = du,du, in T, U™ attaing obviously its minimum
on T% at (0, 0). Thus, we have for ueT?

48 1
(19.2)  T™2(u) > U™(0, 0) = [ du, [ (ud+ul) ™",
0 0

48
= [ {log 1+ (4 ud)"*| — logu;} du,
0

> 46log2l—46(logdd+1)=a >0 for small &*.

Let 4 be the capacitary distribution on 7% i.e. pc T?, 0" =1
on T%; then [4]

capl® = u(T*) = [1du < (U0 = [v*az,ja

I

73 (T%) Ja = 46lja > A%[log1/s,

with constant .4 and 6 < 6* (6* suitably chosen). So our lemma is proved.
Remark. Observe that with T* = (—48,46)x (—1, I} and t* < i
dr* = duydu, in T maxU? <maxU” <407%2(0,0), and estimating

(*) One could pass from B* directly to T2, but we think the reader will appreciate
the above way when generalizing in section 20. .
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in (19.2) from above, we obtain capT = Bflog1/é. In this way one can
show that sup{capdC:C = F, |0 < I} = B'flogl/é. So our lemma is
qualitatively sharp.

Now, »(80)* < (cap 60)|p|, so for § < &* and correspondingly & < &,

w(8; %, 1) < ogVIogl[e, w7 (s; v, L) > exp—ocy/e”.

So (17.7) becomes

lo|? = o,[oTPexp —46y/[0T = eyexp—oyf[oT ([0 < en)

and we have
TueoreM VIIL. Under conditions of Theorem VI,

C1o if

loge, o] ™* oK (v), lo|l < e,
9

[o]" <

where the positive constants oy, €1, €12 depend (only) on F and v.
To complete the proof, the argument used after Theorem VI under
2° ig to be adapted.

GENERALIZATION TO HIGHER DIMENSIONS

20. We have already mentioned that our results generalize to N > 4.
Let us indicate how to adapt our considerations to this case. F' is then
agsumed to be an N-1-dimensional triangulable compact manifold of
clags 0¥~ In (12.2) C is to be understood as a contractive image of the
N-2-dimensional boundary of the N-1-dimensional ball K of radius E,
and in section 13 K should be this ball itself with B = R,. In the proof
of Lemma 7, @ will be an N-1-dimensional unit cube in the ', u?, ..., u" -
-space; do™ = (0¥ ™ [0utdul.. . 00Ny dutdul.. . du” Y, so we have to
estimate [fs™ulu?..w¥'du'de’...du” N Tb i to be written as an

Q

iterated integral and transformed by repeated integration by parts into
a sum of ¥—1,N¥~—2,...,1- and 0-dimensional integrals of products
s-(some derivative of f of an order < N—1).

The equilibrium theory (seetions 14-16) requires no change.

In section 17: 1° the inequality N, < ¢/6* is to be replaced by
N, <8Y, 2° when estimating |lo;— ", the condemser energy is
mE(4N "2 —1) 4>V 8 ingtead of 3mi/48. So Theorem VI is obtained
without any substantial change (¢, depends slightly on ') and so is Theo-
rem VIL, since still |60|y_; < ey 8 provided |O|y_, < |sphere of radius
Ry|y_s, where the indices denote dimensions of both the indicated seb
and the volume meant by | |.

icm

EQUILIBRIUM OF SIGNED MEASURES 277

In the proof of Lemma 8, all goes as for ¥ = 3 till 7%~ is obtained ;
T* means a set in the w!,w?,...,u"space T* — 0,485 (2 k—1-di-
mengional cube of side 7). We have capdC < capT”~. Denote by v
the %-dimensional volume measure in T%: 7, < T%, dr, = dul...du’. Re-
member that potentials accord in dimension with the whole space, the
dimension of which is higher by 1 than that of integrals below. Write
Wt = otgh, ¢ = (W) 4., 4 (W, P = o' (w Y2 Then [u!, u?

N2 N1 ) N b
vy WY 0t BT at least if [u),...,u""?1eTV? and (6] <yy
=arc tgl/V (N —3)l". We have du™'= (pfcos*0)dl, r = g/cosd, so
for weT™*

UN-1() = U'N-1(0, ..., 0)

YN

cos )~V
> ( dry_, f (—N_)r“d@
TN-2 ~y e
<o ~ 1
= ‘J’)/l\r(COS)}N) J cee = AN f ~N=3 dTN_z
pN—-2 e
= Ay UN-2(0, ..., 0).

By induction
UN-1(0, ..., 0) = A%U2(0,0) > A%a,

where ¢ has the same meaning as in (19.2) and A% = Aydy_;...4,.
Now the proof runs as in section 19. So, for N > 4 the theorem VIII is
also valid.
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