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1. Introduction. A series of papers (Mikulski, Rudzki and Wisniew-
ski [3], Oderfeld [4], Rudzki [5], [7], [8]) discuss the problem of improv-
ing the accuracy of estimation of the mean value of a numerical char-
acteristic of @ shapeless product as compared with random sampling by
“the use of a suitable constant sampling pattern or of & suitable approxi-
mate integration formula chosen on the basis of informations we have
about the distribution of the characteristic within the geometrical body
occupied by the product. Put another way, the question is what is the
best way of locating a given number of measurement points in order
that the least possible error of estimation be achieved. Let us mention
three cases pertinent to the description of the digtribution of the char-
acteristic within the body of the product by mathematical assumptions.

Case I. The main subject of discussion was the case we propose to
call three-dimensional. In this case it is assumed that the body of the
product is convex and that the value w of the characteristic in the point
P of the body depends only on the ratio » of the lengths of the segments
PP’ and SP', where § is a known distinguished point of the body (usually
its geometrical centre or the geometrical centre of

the plane base of the body) and P’ is a point of in- pd
tersection with the surface of the body of a half- ,{P
line directed from S to P (see fig. 1.1). So we |

have the relation T p
(1.1} w=Ff(r), 0<r<1, Pig. 1.1

and the mean value % of w over the body of the produet is given by
1

(1.2) w = [3rf(rdr.
0

A bale of cotton or of tobaceo leaves, or a bag of eorn, with humidity
as the considered characteristic, may serve as examples.
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Case IL The simplest situation pertinent to the two-dimensional
cage may be described as follows.

The body of the product is a eircular cone. Its axis s is a distinguished
line and the value w of a characteristic in a point P depends on the ratio
7 of the lengths of the segments PP’ and 8P, where § is the point of inter-
section with s of a straight line passing through P and parallel to a gene-
rating line of the cone, while P’ is the point of intersection of this line
with the base of the cone (see fig. 1.2). In this case
we have for the mean value % of the characteristic
the expression

1
(1.3) @ = [2rf(r)dr,
0

where again w = f(r) for 0 <r < 1.

The stratification of loose material arising when
it is poured on a cone-shaped heap by a conveyer may serve as an
example.

Fig. 1.2

Case ITI. In this one-dimensional case it is assumed that the body
of product may be conceived as arisen by a movement perpendicular
to a given plane ¢ of a figure lying originally on ¢ and then remaining
parallel to it, and that the value w of a characteristic in a point P of the
body depends on the ratio » of the lengths of the segments PP’ and SP’,
where S is a point of intersection with o of a straight line perpendicular
to o passing through P, and P’ is the other point of intersection of this
line with the surface of the body (see fig. 1.3).

In this case we have '

1
(1.4) B = f fr)ar, P
H i S _ [+7
v N
where, as before, w = f(r) for 0 <r < 1.
A railway truck loaded with loose ma- Tig. 1.3

terial may serve as an example.
J% ngmber of problems concerning the estimation of % by & linear
combination ¢, f(r)4...+¢, f(7,), Where for a given n either the ¢'s

or the 7’s or both are to be chosen so as to minimize the supremum of
the absolute difference

[B—(euf (1) + ...+ 0, F ()|

for certa},in classes of functions f(r), have been discussed.
So in [3] and [4] some simple choices of f(r), admitting an exact
evaluation of @, have been considered. In [4] and [7] a class of mono-
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tonie funetions f(r) sueh that

1P <flr) <1—7“, 1 sxa<bh,

in [7] with the addifional condition .

1 1
I @—rdr— [ (1—r")dr =k,

0 0

has been discussed. In [5] the class of functions

for)y =1—2", m =1,
and in [8] the class of funections
fr) =1—", 0 m <1,

have been subject of interest.

However, optimal systems of nodes ; and of weights ¢; have been
got only for a few small values of =.

Problems of determinig the ¢’s and #’s in the linear form e,f(ry)+
-+ ...+¢, f(r,) so ag to minimize

sup! [F(r)dr—(es flra) 4.+ oa Fral]
fe 0

for a given class H of funetions f(r), 0 <7 <1, have been considered
by other authors (see [9]-[11]). For H have been taken classes of funec-
tions which have certain regularity properties, Lipschitz condition or
bounded variation of f(r) being instances of most general conditions.

Our aim is to prove two simple results of this sort under agsumptions
which seem to be suggested by the examples of this section: the first
for bounded non-decreasing functions (Theorem 1), the other for bounded
non-decreasing functions which independently of this fulfil a Lipschitz
eondition (Theorem 2).

Theorem 1 is clogely related to a result by Steinhaus and Trybula
[2] (the reader may see also [1] and [6]). There the question was how to
divide the segment 0 <r <1 into n disjoint parts S, ..y 8, and to

attach a number 7; to each §; so that sup [r-—r'|, Where r" =; it ref;,
oLr<1

be a minimum. We can restate it as follows: what is. a minimax linear
approximate integration formula with n-—1 nodes for a class of non-
increaging functions f(r), 0 <r <1, taking on values 1 and 0 only?
The angwer is that we should divide the segment 0 <r <1 into equal
patts 8; = {r: (i—1)/n <7 <i/n} with 08, and choose 7, = (2¢—1)/2n,
i=1,2,...,n, which amounts to the same as to take the points 1/n,
2/n....,(n—1)/n for nodes and to use
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1 1 1) n-—-1
2n + n (f (17,) +"'%—f( n ))
a8 the approximate integration formula.
Theorem 1 may be regarded as a kind of limiting form of theoren
9, which arises when the constant in Lipschitz condition increases inde-
finitely. Thus in view of theorem 2 its proof is in a sense superfluous.
However, we bring the proof because of its simplicity.
Finally, in section. 3, we reword our theorems so as to get minimax
approximate integration formulas relating to the integration with res-
pect to any normed absolutely confinuous measure.

126

2. Approximate integration formmlas. In this section we shall for-
mulate and prove two theorems on approximate integration of functions
flz) defined for 0 <z < 1. We shall give them the form of statements
about estimation games between nature and the statistician.

Let H be the class of non-decreasing functions f(z) defined for ¢ <
<o <1 and with values in the interval 0 < f(») < K which are con-
tinuous at ¢ = 0 and # = 1. Let B be the set of vectors (¢, &) = (¢4, ...,
Cns D1y cany By) such that e¢4+...46 =1 and 0 <o <...<®, <1.
The numbers ¢;,..., ¢, Will be called weights, the numbers xy,...,x,
will be called nodes.

THEOREM 1. Consider an estimation game between nature, which choo-
ses f from H, and statistician, who chooses (¢, ®) from B. Let

1
(2.1) r(f(e, @) =| [f@)do—(er flo) + ...+ 0, f(a)|
0
be the payoff in this game. Then the unique minimazx strategy of the statis-
tician 1is the wvector (c,, %,) defined by the cqualities

. *(1 1~) v v(l 3 n—1
ol | R 7[:,”.’774’ o -

2.2 ey ey ————
2.2) o2n’ o’
and the minimaws risk of the statistician is given by

2n

(2.3) inf sup r (f, (e, m)) I .

(ex)B fH 2n

The proof of theorem 1 will be based on three lemmas.

LevMA 1. For a given (¢, )eB let H, g be the class of functions feH
which are constant in the intervals 0 < & <3y, B <8 < Bgy.eey By_y <
<o <2, 3, <ax<1l. For every (¢, ®)eB there is a function geH
such that

2.4 ] s .«‘ == s
(2.4) ;s:}lipr(f,(c,r)) (g, (¢, x)).
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Proof. Let us fix (¢, )eB. We sghall confine ourselves to proving
that for every function feH there is a function geH,, such that

(2.5) T(f, (e, :L‘)) <"'(g: (c,a:)). -l{
Indeed (see fig. 2.1), if
I
1
2.6) [f@)ds < orf @)+ ...+ 0uf(@a), I
[ l........... o
it is sufficient to take for g a function
continuous on the right and fulfilling the  |.../. 4
equalities :
Tid1 1 > X
. = e dr
@1 g = %f flo)de
— y=flx)
for @< @< By, Bo=0, Tp1 =1  coveennn. y=g(x)
(t=0,1,...,m). Fig. 2.1

If inequality (2.6) does not hold, a function g fulfilling equations
(2.7) which is continuous on the left will serve the purpose.

LeMMA 2. If (¢, ®,) 45 defined by (2.2), we have

(2.8)

S}:gr(fy (€0, ®o)) = o

In view of lemma 1 we may restrict ourselves to consider only fune-
tions feH gy oy For a function feH (e qy
with fixed values in the intervals 0 <@
LBy, eeny B <% <1 the values f(z),
i=1,2,...,n, are maximum, when the
function f is continuous on the right (see
fig. 2.2). We have then

[y

1 Lit1 .
~f@) = [ f@is, i=1,3,...,n—1,

¥
. 2.

O * B
Fig. 2.2 and thus
1/2n 1
1 i
1, (e, @) = | S~ [ f@ido— [ f@az]
0 (2n—1)/2n !

1 1 | 1 .
= f@n) = 5 IO = 5| = 5 i) —FOl < 5

1 K
N

with the equality holding if f(0) = 0 and f(1) = K.
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Similarly we get #(f, (€o, &,)) < K/2n for funetions feH, ., which
are continuous on the left, and thus this inequality holds for every
JeH gpmp):

LeMMA 3. If (€, ®) # (Co, &), twhere (Cq, o) 45 given by (2.2), then

j:lﬂp'r(f, (e, @) >
Proof. We shall prove that if the assumptions of lemma 3 hold, then
there is & function feH such that r(f, (¢, ®)) > K [2n.
Tor a given (¢, x)eB define a function sy, (2) = s(x) by

- for 0 <o <oy,
2.9 s(z) = 1
(2.9) (@) “w‘*',_)./ c; for @y <& <1,
irey <

The function s(z) has thus jumps ¢, ..., ¢, at points =, ..., a,,
and othem%e it has a derivative equal to —1. Moreover, because of the
condition ¢,+...+¢, =1 we may pub

4 by continuity s(0) = s(1) = 0 (see fig.
2.3). Let
0 = sup |s(z)| = max{-s(z,—0),
[ P24
8(391—{-0), ; ’_8(@1—0)’ 8({1},,,-|-0)},

y where s(z—0) is the left-hand limit and
s(x+0) is the right-hand limit of s(z)
at . Suppose we have C = —sg(w;—0).
If we take for f a funection which is con-

tinnous on the right and fulfils the equalities

Pig. 2.3

0 for
K for

<o <y,

flz) =
< w<l,

we shall have

[f@ydn = KQ—m), of@)+...+enf(@,) = E(6i+...+0),
and thus
r(fy (e, @) = Bl —2)—K(1—0,--...—0;_y)]
= Kl|(es+...+6;1)— ] = KOC.
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If we have ¢ = s(x;+40) for some ¢, the construction of a function
f for which r(f, (e, &)) = KC is analogous. Thus we see that
sup #(f, (¢, ®)) > KC.
feH
Now if (¢, ®) # (¢y, ®;), then C >1/2n. To see this, note that we
have e, = s(@;4-0)—s(2;—0) and ¢;+...4+¢, =1, which implies that
0 = tmax{le, ..., le,]} > 1/2n, and the equation ¢ = 1/2n iy attained
if and only if all ¢’s equal 1/n and all sums s(z;-0)+s(2;—0) equal 0.
Then, however, (¢, &) = (C,, ;).
Lemma 3 is thus proved.
Theorem 1 is an immediate consequence of lemmas 1, 2, and 3.

Remark 1. If we replace in theorem 1 the condition 0 < f(z) < K
by f(1) <f(0)+K, we can drop the condition ¢;-+...-}+e¢, =1.

Remark 2. The assertion of theorem 1 remains unchanged, if we
drop the condition ¢;+...4¢, =1 and replace the class H by the class
of functions f(«) with variation Vf < K.

Examples of section 1 seem o suggest that it would be interesting
to narrow the class H of functions f by imposing on them in addition
a condition of differentiability and of boundedness of the derivative.
In order to avoid inessontial discussions in the proof and to get clearer
formulations we shall choose, instead, & Lipschitz condition.

Let thus I be the class of non-decreasing functions f(z) defined
for 0 <o <1, with values in the interval 0 < f(z) < K and satisfying
the Lipschitz coruh‘omn

@) —fla")] <

TEEOREM 2. Consider an estimation game between nature, which choo-
ses o function f from L, and a statistician, who chooses a vector (c,a) of
wetghts and nodes from B. Let the payoff be defincd by (2.1). In this game
the unique minimaex strategqy of the statistician is the vector (Cy, X,) defined
by (2.2), and the minimaz risk of the statistician s given by

Mz —

1
1 ¥ if M <2K,
o 2n 4
(2.10)  inof supr(f, (¢, ®) =
(ermIB 1ok B 4y ex<m
211,( M) El s

We shall base the proof of theorem 2 on four lemmas.
LeMMA 4. For every (¢, x)eB we have the relation

(2.11) sup (f, (¢, @) = sup r(f, (¢, ®)),
feLt feLy

Colloquium Mathematicum XI 9
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where Ly is the class of funetions feL which have a piecewise constant deri-
vative.

Proof. Let us fix (¢, ®)eB. It is easily seen that for every funetion
feL there is a function geZ, such that fla) = glay), ¢ =1,2,...,n,
and that

[f)do = [g(o)de.

Thus lemma 4 follows.

LeMMA § (compare Nikolskil [9], p. 24-26). Given (¢, 2)eB, rlef'im"

a function $qq(x) = s(@) by (2.9). Then we have for every fely and every
(e, x)eB the relation
1 1
(2.12) [Flaydo—(o; fl@)+ ...+ en f(@,) = [s(u) f (w)du.
0 0
Proot. Without loss of generality we can assume that f(0) == 0. Then

‘we can write
x

flo) = [fwdu,

1]
or, with the use of the auxiliary funection

S 1 for w20,
S) =
0 for w0,

we have
1
f@) = [8(@—wf (wdu.
Q

Owing to this we have
1

[F@da—(euf @)+ ...+ 0, f ()

! 1 s .
- fU Sl — )" (w) duu-- _,}:ffr flt'\’(mf »u,)f’(u)du}d::-
¢ =
1 1 n
= [{f Ste—wyda— e (- w)} f (w)du
0 0 Fper
1
. = of{l-—u—— x:x%;u%} I (w)du = j{l —p - (1 — hgue")}f/m)d”
{’_“+ 2'0¢}f'(“)du = 1..s*(u)f’(q/,)du.

Ty <u 1]

Py
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Limyva 6. If (eq, %) 18 given by (2.2), we have
1M
(2.13) £, (o) =] 0
2. sup #{f, (e, ) =
stlo ( y (Cogy Lo e
2n

for M < 2K,

K
(1——;[) for 2K < M.
LEMMA 7. If (¢, ®) 5 (Cy, &), where (co; 2y) is given by (2.2), then

sup 7 (f, (e, 2)) >sup 7(f, (€, %)).
feLy feLy

Proof. In view of lemma 5 and the form of function §y (@) =
= g,(m) Wwe see that #(f, (¢, %)) is maximum if f(0) = 0, and
M it s(2) > a,
0 it s(2) < ay,

f'(@) =

where a, is the least non-negative a for which
‘ K

i H < =

mes {u: so(u) > a} < i

There remadins @ simple computation which leads to (2.13) and thus
proves lemma 6.

To prove lemma 7 it is sufficient to verify that under assumptions
of lemma 7 there is a set T of points @ of measure not greater than K /M
such that s () = s(2) is of constant sign on 7T and that

; | 1
| fs(m)dm’ > —,ljl—sup 7(f, (Cos @) = f so(w)dez .
i ‘ A ek {x:80(Z)>ap}
0 0.
Because of the equality
mes {z: $(w) >0}-+mes{z:s(z) <0} =1

at least onme of the sets {x:s(z) >0} and {w:s(x) <0} has measure
greater than or equal to 1/2. Suppose we have

(2.14) mes{x: s(x) >0} >1%.

The plane set {(z,y):s(z) >0,0 <y < s(x)}, the area of which
is equal to :

s(z)de,

{@:8(z)>-0}
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contains certainly (see fig. 2.3) rectangular isosceles triangles

{,9): 0 <o <otb, 0<y<s@)—(@—2)},

where b; = min{®;,,— &, max (0, s () )} is the length of perpendicular
sides of such a triangle. The joint area of these triangles is thus equal
to 4(b4...+b2). Moreover, we have the relation

by+ ...+ b, = mes{w: s(x) > 0}.

By putting b} = b;/(b-+...+b,) we arrive at the relation by+...+
+b, =1/2.

Now, analogous triangles for the function sy() arve all congrment
and the length of their perpendicular sides is 1/2n. As @ is a convex

function, we have
> Ly
= "\on)

the inequality being sharp unless all b; are equa,l
Therefore if K/M

(2.15) 07+ ...+ b)

>1/2, we have for T = {J {m w¢<w<w1—1—bi}

=1
e
Zn|l—| =
g (2%)
with @, = 0, which implies the assertion of lemma 7.

If K/M <1/2, then o, >0 and

% 29—1 2t—1 K
{w: 30(-7”) > ao} = U { omn <#< om -n.]ll}’

8o (2) da:

{®:80(%)> g}

. 1
j s(z)dw >§(b{”+...+b;f)
T

and consequently

2 2 2
f so(w)de = n- 1{(1) —-(_l_) (1_ﬂE§)}
{m:8q(x) >0} 2n 2n M

with & = 1—2K /M. If we choose

i

n(1)21 .
5 \om (L—¢&%)

L3 2
T = iU{w x; <m<a:7+—-{£—bl},
we will have
s(x)de >}—(1—82)(b’2+.. +b%) =2 1 2(1-—82) = f o () dw
2 1 . n /2 2% - 0 ?
{:8g() >ag}

which again implies the assertion of lemma 7.
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Tf (2.14) does not hold, we have either

mes {z: s(x) < 0} >1/2,

or

mes {z: §(2) > 0} = mes{x: s(x) < 0} = 1/2.

In the first case the proof is essentially the same, the main change
consisting in that we consider now reetangular isosceles triangles con-
tained in the set {(z,¥):s(®) < 0,s(z) <y < 0}.

In the other case we base our arguments on that one of the sets
{o: s(x) >0} and {w: s(x) < 0} for which not all lengths of perpendicu-
lar sides of the considered triangles are equal, and we use the sharpness .
of inequality (2.15) for non equal b;’s. If there is no such set among them,
we obviously have (¢, &) = (€, &).

Lemma 7 is thus completely proved.

Theorem 2 is an immediate consequence of the four lemmas 4-7.

3. Integration with respect to a finite absolutely continuous measure.
In this section we shall reword theorems of section 2 so as to get
formulations pertinent to approximate integration with respect to an
arbitrary finite absolutely continuous measure. This will enable us to
draw conclusions about the optimal location of measurement poinbs in
cases I and II of section 1.

Let p(¢) be a probability density on the real line —oo <i< oo,
Let @ be the class of non-decreasing functions g(2) defined for —oco < i «
< oo, with values in the interval 0 < ¢(f) < K and such that for any

P

i

11" we have g(t') = (&) if f ()t == 0. Let A be the set: of vectors
(eod) = (Cry eevn 3 o onns by) \\Lﬂ, ¢y =1 and -~o0 <t =T .
<1, < oo, Consider the estimation ;@nuﬂ bhetween nature and .\m-

tistician, where nature chooses g from & and the statistician chooses
(e, t) from A. Let

=S}

(3.1 olg, (e, ) =1 [ g di—(eig(t)-F ...+ 0ug (t))

be the payoff in this game.
Consider now the transformation of the line
the segment 0 < 2 < 1 defined by

—oo < t < oo onto

{
f{p(’l&) du,

=0

(3.2) 0 = wlt) =
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and the transformation of functions ge & into functions f(2), 0 << # < 1,
defined by the formula

(3.3) J@) =g,
where £, is any root of the equation

[
(3.4) [ pwdn =a.

Because of the monotonicity and boundedness of ¢(t) the function
f(#) has finite limits at # = 0 and = = 1. So (3.3) defines a one-to-one
transformation of the class @ onto the class H of theorem 1. Morcover,
if feH corresponds to ge@ by (3.3) and (¢, x)eB corresponds to (¢, #)e.d
by (3.2), we have

oo 1
[ 9ewar = [f(w)da,
(3.8) - !
e gt)+ .. e g(t) = ef(@)+...4-e.f(,),

and, consequently,

(3-6) Q(g’ (C, t)) = ’f(f, (C, .’E))

This enables us to reword theorem 1 in the following way:

THEOREM 1'. In the estimalion game between naitwre, which chooses
g from @, and the statistician, who chooses (¢, ¥) from A, with the payoff
g( s (e, B)) dfined by (3.1), @ minimaz strategy of the statistician is a vec-
tor (co, ty) defined by

1 1
Co=\"y.es ]y bty = (Lrppny -+ oy Lean—1yn) s

]
w n

(3.7)

and the minimax risk of the statistician is given by

(3.8) inf sup ely, (e, b)) = K/on.

(e,t)ed gel

Similarly, given the probability density @(f), —oo << ¢ << cv, we can
consider the class 4 of non-decroasing functions ¢(i), —oo <t < oo,
W‘.lf».h values in the intorval 0 < g(f) < K which fulfil the Lipschitz con-
dition reletive to the probability distribution determined by ¢(2), i. e
such that for any ¢’ < " we have the incquality

e
(3.9) gt —g() <M [ p(nyas.
¥

We see that the class A of functions g(f), —oo <t < oo, is trans-
formed by (3.3) onto the class I of functions f (), 0 € o <1, of theorem
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2, and the set A is transformed by (3.2) onto B of theorem 2 in such
a manner that we have (3.6) if f is the imaege of g and @ is the image of .
Thus we can reword theorem 2 in the following way:

TaEoREM 2'. In the estimation game, where nature chooses g from A
and the statistician chooses (¢, t) from A, while the payoff el(g, (¢, 1)) s
given by (3.1), o minimaz sirategy of the statistician is given by (Co, t,)
as defined by (3.7), and the minimax risk of the statistician is

1 ]
1 if M <2K,

3.10) int sup o (g, (¢, ¥) = 4
@. (e.b)ed 05.11 elg» 16 _E( K) i oK sM
n M =

COROLLARY 1. If by conditions of theorem 1 or 2 we have

3t for

0 otherwise

0<t<1,
@(t) =

(see case I of section 1), then the best system of nodes iy, ..., %, is given

by

3y .
t=V(@i—1)2n, i=1,2,...,%.

CoROLLARY 2. If by conditions of theorem 1’ or 2" we have

2t for 0<t<l,

0 otherwise

# (1) =[

(see case II of section 1), then the best system of nodes by, ..., %, is given by

to=V(@i—1)2n, =1,2,...,%.
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ibidem 6 (1961), p. 7-17.
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[6] F. Zitek, O mierzeniu przex poréwnywanie (On measuring by comparison)
ihidem 6 (1961), p. 43-50.

[7] W. Rudzki, Szacowanie wladciwosci érednich produkiéw bezkszialinych (Esti-
mation of mean properties of shapeless products), ibidem 6 (1962), p. 235-248.

[8] — Pobieranie prébek = produkiéw bezksztaltnych rozwarstwiajacych sie (Draiw-
ing a sample from a stratified product), ibidem, to appear. .

[9] C. M. Huwoabcrult, Headpamypnuie gopsyas, Mocupa 1958.

[10]T. A. Mattgaena, Haudoaee mownvie readpamyprvie @opmyaii das ie-

s

komopux wraaccos fhynryuii, Thesis, 1954 (quoted alter [9]). D ) ] { >
[111 — Kesadpamypruie gopmyast ¢ HALMEHVUCH OYEHROIL O0CIMAIMKERL Just Hero- } R O B L E M £ >
mopuz raaccoe Gynryuii, Tpyas Maremarmaeckoro Waermryra AH CCCGP 53 (1959),

. 313-341.

P 101, R 4. Résultats ultérieurs ont été obtenus par Zndm (*).

Regu par lo Rédaotion le 18. 2.1963 I1.3-4, p. 301; R1, V.1. p.116; R2, VI, p. 3205 R 3, VIL 2 p. 307 et 308.

() 8. Znhim, On a combinatorical problem of K. Zarankiewicz, Colloquium Ma-
thematicum 11 (1963), p. 81-84

P 356, R 2. Le méme résultat que celui de Lax, ¢ité dans P 356,
R 1(?), a été etabli avant lui par Trzeciakiewiez (3).

1X.1, p. 165.

(*) P 356, R1, Colloquinm Maihematicum 10 (1963), p. 184.

(#) L. Trzeciakiewicsz, Remarque sur les translations des ensembles lindavires,.
Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Cl. III, 25
(1932), p. 63-65.

P 361, R 2. La réponse néy.live signalée dans le fascicule précédent
de ce volume, p. 184, est publiée dans ce fascicule (%).

IX. 1, p. 166.

(%) B. Gleichgewicht, A remark on absolute-valued algebras, Colloquium Ma-
thematicum 11 (1963), p. 29-30.

P 417, R 1. Voici une solution négative, trouvée par H. Davenport
et signalée par lui & Pauteur du probléme:

Si f(z,y) = @ +oy—y*+1) (@’ + oy —y —1) et X est Pensemble des
nombres de Fibonacei u,, 1, ..., il existe pour tout zeX un yeX tel
que f(z,y) = 0 (A savoir, ¥ = U,y lorsque 2 = un).

Le probléme reste ouvert méme lorsque W est irréductible dans le
corps des mombres rationnels.

X. 1, p. 187. .
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