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On the other hand, by Lemma 4,
Flaw, &y flay, &y, ) # @
Thus, f(ay, di, ds) # f(ds, @1, ds), which, according to (25) and (26),

implies the equation f(d, a;, d;) = ¢,. Since the operation f is alternating,
the last equation and (27) imply

fley, ay, &) = flay, &, ) :f(""u dyy fldyy ar, dz)) = by,
which contradicts (24).
Now consider the case f(ay, dy, dy) = ¢;. Since the operation f is
alternating, we bhave, by (22), the equation

Fles yy dy) = flag, dyy ¢5) "“’f(a'n dy, fay, dy, dz)) == flay, dyy da) == ¢y,

which also contradiets (24). This completes the proof of the independence
of each three-element subset of [a,, ., ¢;] which does not contain the
element ¢,. Since @y, @, a; are independent in the algebra (4;F), to
prove the Theorem it is sufficient, by Lemma 3, to show that all three-
element subsets of [a,, @y, a5] arve independent in the algebra [a,, ay, as].
If o,¢[ay, ay, as], then it is obvious. Further, if ¢,e[a,, ay,a3], then
every three-element subset of [a,, @,, 3] which does not contain ¢, is
independent. Moreover, the set {¢,, ¢,, a,} containing ¢, is independent
and, by (17), is contained in [a,, a,, a3]. Thus, by the first part of the
proof (n = 3, m = 1), every three-element subset of [a,, as, a,] 15 inde-
pendent, which completes the proof of Theorem 2.
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1. Introduction. Let m be an arbitrary cardinal number and {Uelser
be an indexed set of non-degenerate m-complete Boolean algebras. An
m-complete Boolean algebra B is said to be a mintmal m-product of
{2} if there exist m-isomorphisms

b U—B (L)

such that
(a) the union of all the subalgebras 4,(2;) m-generates B,
(b) the subalgebras 4,(2;), teT', are m-independent in B,
(¢) the set of all meets of the form

mtsﬂ"iﬁ(Af)

is dense in B.

Christensen and Pierce [1] proved the existence of the minimal
m-produet of any indexed set of non-degenerate m-complete Boolean
algebras (for m = ¥, see also Sikorski [3]). They proved also that

1.1. The minimal m-product of w-complete m-distributive Boolean
algebras is a free w-distributive product of these algebras.

We recall that an m-complete m-distributive Boolean algebra B3
is said to be a free m-distributive product of an indexed set {2 }er OF
m-complete m-distributive Boolean algebras if there exist isomorphisms

where A;e,., I"<cT,T <m

’I;tZ)Z[l "“7% (t(T)
such that

(«) the union of all the subalgebras 4,(2;) m-generates B,

(B) if, for every teT, ks is & homomeorphism of 4;(2,) into any m-com-
plete m-distributive Boolean algebra @, then there is & homomorphism
% of B into C which is a common extension of all the homomorphisms

By, 1. B(A) = h(A) for Aei®) (of. Sikorski [3], p. 214).
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The purpose of the present paper is to give another proof of theorem
1.1 using the following well known statements:

(A) An w-complete Boolean algebra B is m-distributive if and only
if every m-complete subalgebra generated by at most m elements of B is atom-
ic (i. e. is isomorphic with an m-field of sets) (see [4], P. 82);

(B) If B is an m-complele Boolean algebra with a set © of generators,
then a mapping f of © into any m-complete field B’ of subsets of a set
X can he extended to an m-homomorphism of B into B’ if and only if

Nere()4; = A implies (M e()f(4) = A,
where T < mand e(t) = 1 or —1 for every teT (see [4], p. 115).
Here 1-4 = A and —1-4 = —1 =the complement of 4.
‘We adopt in the present paper the terminology of [4]. In particular

A and V denote the zero and the unit element of a Boolean algebra
regpectively.

2. Minimal m-products. Let {2[},r be a fixed indexed set of nou-
degenerate m-complete Boolean algebras, let B be the minimal m-prod-
uet of {A}r, and let 4, be m-isomorphisms of 2, into B, ¢eT, such that
(a), (B), (e) hold. _

LevmA 2.1. Suppose T" <« T', T < m. For every tel' let S; be a non-
empty set and let 8 be the set of all mappings f of T' into U er Sy Such that
S @) e8; for every teI'.

If A= Agseiy(A)) for seS; and teX, and if

(%) U4, =V  for every  tel, .
then
() Ufs Nz Ay = V.

Proof. Suppose the lemma is not true. Then theve exists, by (e),

a subset T <P, T” <wm, and non-zero elements Aqgety (), teT”,
such that

MternAy ~ Neer-Ae gy = A

Then, by (b), 7" ~ 1" # 0. But, by (), there it a mapping foed
such that

for every fed.

Ay Ay #= A for el AT,
This leads, however, to a contradiction because
Maeqvdy ~ mteT'-A-i,fo(t)
= Nteprnpdy At,ro(t) A Neernemrdy mieT'-T"-At_io(t) 7* A

by (b), T T” being of a power < m.

e _ ®
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LeMMA 2.2. Let T" <=7, T <m. If B, is an m-complete atomic
subalgebra of 4(2l) for every t<T", then the m-subalgebra B, m-generated
by the union of all the B, is atomic and it is the minimal m-product of {B}ier-

Proof. We shall apply lemma 2.1. For this purpose let {4;}ses,
be the set of all atoms of B, (4,, # A, for s % s’) and let

S ={Mier-Ayypy:feS}.
Then

Nerdigy ™ Nirdipe = A for =5

Therefors, by (), the class of all the elements 4«8 such that both
A and —A are joins (in B) of some elements of H is an m-subalgebra,
say B;, of B. Multiplying both sides of (xx) by any element 4<B;, we
infer that B, contains all the subalgebras By, teT. Thus it contains B,.
This proves that every non-zero element in B, contains at least one ele-
ment of $ as its subelement. Thus B, is atomic and O iz the set of
atoms of B,. Thus the first part of the lemma is proved. The second part
follows from the first since the set 9 is dense in B,.

THEOREM 2.3. The minimal m-product B of an indexed set {Ap}ir
of mon-degenerate m-complete m-distributive Boolean algebras is m-distri-
butive.

Proof. Let © be a subset of B of a power < m and let B, be the
m-subalgebra of B m-generated by S. Then for every A« S there exists
aset Ty T and for every teT, a set S, 4 < &(2y), Ty <, Sy y <M,
such that A is in the m-subalgebra m-generated by the union of all the
sets &, 4, teT,. Consequently B, is an m-subalgebra of the m-subalgebra
B, m-generated by the union of all the sets S, 4 (4 S, teTy).

Since the Boolean algebra i, (2;) is m-distributive, it follows, by
(A), that the m-subalgebra of 4,(2;) generated by &;, is atomie. Thus,
by 2.2, B, is atomie, too. Consequently B, is isomorphie with an m-com-
plete field of sets. This completes the proof, by (A).

3. Extensions of homomorphisms. Let 2 be an wm-complete Boolean
algebra. For any subset & = ¥ let us denote by R, the m-subalgebra of A
m-generated by K.

LEMMA 3.1. Let f be a mapping of an infinite set & = 2 in an m-com-
plete Boolean algebra B. If, for every subset R « K, of a power < m,
there exmists an m-homomorphism he of R, into B such that hg(d) = f(4)
for every AeR, then there ewists an m-homomorphism h of Ko, into B
which is an ewxiension of f.

The above lemma has been proved for m = ¥, in [2]. The genera-
lization for m >N, is trivial.
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TuEOREM 3.2. 4 mapping f of a st K <= U in an m-complete
m-distributive Boolean algebra B cam be emlended to an w-homomorphism
hoof R, in B if and only if for every set {Ay:teT, T <m}« ®

A Nere@d = A implies Nere(@f(4y) = A,
where e(t) =1 or —1 for every teT.

Proof. The necessity is obvious. By lemna 3.1 we must prove the
sufficiency of (i) only in the ease where the power of & is < m.

In this cage, however, the power of f(R) is also <m. Hence f(R),
is isomorphic with an m-complete field of sets, by m-distributivity of 3.

Therefore, by (B), the mapping f of K into f(R), can be extended
to an m-homomorphism

h’&v : g¥m e f(ﬁ)m‘
i e. to an m-homomorphism hg: 8, — B, q. e. d.

4. The proof of theorem 1.1. Let {2}y be an indexed set of non-
degenerate m-complete m-distributive Boolean algebras. Let B be the
minimal m-product of these algebras. By 2.3, B is m-distributive.

Let € be any m-complete m-distributive Boolean algebra. By the
definition of free m-distributive product of an indexed set of Boolean
algebras (see the introduction) it remains to prove that if, for every t<T,
hy is an m-homomorphism of 4,(2l;) into €, then there exists an wm-homo-
morphism % of B into € which is a common extension of all the homo-
morphisms ;.

This follows, however, immediately from 3.2. Condition (i) is satis-
fied since the subalgebras 4,(2) of B are m-independent.

REFERENCES

[1] D.J. Christensen and R. 8. Pierce, Free producis of u-distributive Boolean
algebras, Mathematica Scandinaviea 7 (1959), p. 81-105.

[2] R. Sikorski, On analogy between measures and homomorphisms, Annales
de la Société Polonaise de Mathématiques 23 (1950), p. 1-20.

[8]1 — Products of abstract algebras, Tundamenta Mathematicae 39 (1952),
p. 211-228.

[4] — Boolean ulgebras, Berlin-Géttingen-Heidelberg 1960.

[8] — Cartesian producis of Boolean algebras, TFundamenia Mathematione
37 (1950), p. 25-54,

Regu par lo Rédaction le 18. 12. 1962

©

COLLOQUIUM MATHEMATICUM

VOL. XI 1963 FASC. 1

MINIMAL BXTENSIONS OF WEAKLY DISTRIBUTIVH
BOOLEAN ALGEBRAS

BY

T. TRACZYK (WARSAW)

Introduction. Pierce [2] has proved two important theorems on
minimal extensions of m-distributive Boolean algebras. The purpose of
the present paper is to generalize those theorems to weakly m-distribu-
tive Boolean algebras.

Terminology and notation. The symbol |_J will be used both for the
Boolean join and for the set-theoretical union. The symbol (1), similarly,
will be used both for the Boolean meet and for the set-theoretical inter-
section. The zero element of a Boolean algebra will be denoted by 0 and
the unit element by 1.

A Boolean algebra and the set of all its elements will be denoted by
the same letter.

A subset 4 of a Boolean algebra B is said to be a covering of B if

Ue =1.

aed

A covering 4 of a Boolean algebra B is said to be m-covering of B
if A <m, where A denotes the cardinal number of 4. A covering or
m-covering A4 is called partition, respectively m-partition if elements
of A are disjoint. B

If A and O are subsets of a Boolean algebra B, we say that A refines
0, if for every a4 there exists ceC such that @ = ¢; we say that 4 weakly
refines C if for every aeA there exists a finite sequence
SRR Y

(615655 ...
k
such that a« < (J ¢

qe=1

A subalgebra B, of a Boolean algebra B, is said to be an m-regular

subalgebra of By, when for every set A = B,. A < m, if the join & existy
. aed
in B, it is also the join of this set i If B, is an m-regular subalgebra
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