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1. INTRODUCTION AND NOTATION

As in Varadarajan's paper [7] to which this is a sequel, {S;} is the
sequence of Cesiro sums of order a, of a real sequence {s,}, but now we
work with e > —1 and not necessarily an integer. Theorem IL of this
paper, with p-41 changed to p, is a Tauberian theorem for the Cesaro
sums Sh*°, where p =1,2,..., 0 < é <1, which was considered by
Varadarajan in the case é =1 ([7], Theorem B). Corollary II under The-
orem II, similarly changed and holding for p = 1,2, 3, ..., has a comple-
ment in Theorem I for the case p = 0. Theorem I itself includes several
special cases stated as corollaries. Corollaries I, and I, are familiar results
due to Hardy and Littlewood. Corollary I; in its alternative (b) is essen-
tially a theorem given by Dixon and Ferrar ([3], Theorem I). Corro-
lary I, is a result given by Lord ([4], Lemma 11) and applied by him to
prove a Tauberian theorem for passage from Borel summability to Cesaro
summability of & certain order. Corollary I, can also be derived from
a result suggested by Kuttner to Rajagopal ([5], Lemma 5). But Kutt-
ner’s result, while being broadly similar to Theorem I, is not as simple
and readily applicable as Theorem L

We first recall that S5 (» = 0,1,...) for all a > —1 is given by
the formula
(1) 8= D'AiTls,,

y=0
where Af™' = coefficient of 2" in (1—x)™" (jo] <1).
If we define S, =s,—s,_;, then, for a, B such that a > —1, 8>
> —1, a+p > —1, the sequence of Cesdro sums of order ai g of {s,}
is the same as the gequence of Cesaro sums of order § of {S;}. Further-
more, summability (C,a), ¢>—1, of {s,} to sum I ig the relation
TiapySan® =1 (n — o).
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We require the following finite differences of {s,} in which h, & are
positive integers, »p =1,2,..., 0 << 6 <1:

Jgsn = 8ny "—"lllts'n = Span T S "%'s"n = “11]:/”:—15'1;4;
-A?-A:Sn = 84,y A'—'Jl—k""n = S Suekey A8y = AL L/ﬁ)k Sny
" I(h—v+0)
I(l ABHog = ET—(—::_*’I) 488505
b Myv—146
l(n) AP48s, = Lo T 9 A2 8nd ., (w1 = (p+1)k).
=1 ()

The differences of fractional order p-- 4 given above were introdu-

ced by Dr. Bosanquet ([2], § 3.1) who has since pointed out, in a letter to

Prof. Rajagopal, a misprint in (2), (ii), as originally given by him. The
migprint, now corrected for the first time in (2), (ii), consists in the
appearance originally of I'(k—v»-46) and I'(k—»-1) respectively where
I'(v—1+6) and I'(») now occur. This misprint is corrected also in the
statement of Bosanquet’s result given below as Lemma C, (ii).

2. LEMMAS

LemMA A ([1], Theorem 1; or [2], Lemma B). If 0 <m < n and
< § <1,then

m
' VA‘?‘_ < max [89].
i,,é'(; " 0</.¢g'm !
Leyvma B (Cf. [1], Theorems 2, 3). If dy, dy, ... s & positive mono-
tonic sequence, p 18 @ non-negative mtege'r, O<m<m <nand 0 <9 <1,
then

w
'ZAﬁ“ld,,S”m,,' £ 2 max d,-max S5+

Py My’ Ostpsim.

Proof. The proof which follows is for monotonic increasing {d,}.
The proof for monotonic decreasing {d,} is similar and omitted. We have

'ZAd—ld ®

r=m

= | A% o S8 AL S5 1 A A B S

<dy max [AS1SE AN
1<km/—m 41

188 g1 ... t0 & terms]

N - fn—m’

(IREr
ye=0

< dy max AS;..

Igksm —~m-+-1
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where the second term on the right side is absent if m' = n. The required
result now follows from Lemma A.

Lemma O (Cf. [2], Theorem 5). For positive integers b, b, p = 1,2, ...,
0<o0<1,
R
. (h— ve-+ 0) ”
o s - 52 0 N,
@ T+ 1) L > 24 Syt tp?
P
. s omes NV (rg— 1 0)
APES QP60 __ Ao )
(i) 4TS =0 5: T(v) y Z:S" R B
o e

if n>(+1)k

3. THEOREMS

TuworEM I. Let W(z), V(2) be positive functions of x >0, such
that
l (i) W(z) s monotonic increasing and unbounded,
(3) (ii) V(@)[V(e) <Hif 0 <|o'—a| <o (n<1),
(iii) {W(z)/V (2)}'* = O(x) as & -+ co where 0 < & <1
Then
(4) 8 =o{Wn)} as n—> oo,
(8) s = 0{V(n)} as = -—>oo,
together imply, for any r such that l0 <r<d,
(6) 8 = o[{V M- "P{W@)™P]  as w oo
Proof. By definition (1),
n-h
\‘w )[‘(fn-v+r)
(1) I'(r) 8L = (2“: + PO F st 5,
—h
S ) R W
< I'(n—»+1) Ty +1)

I'iv+71)
T'(»+8)°

= T,+7T, (say), where d, =
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o4 , —
By Lemma B, (4), and (3) (i),
(8) Ty = I'(8) 1 5‘ A4, l ) max. |
I'(h+r) &
f) al — W
ar(s) F(h—i—é) (n)

for all wufficiently large n. Also, by (5) and (3), (ii),

I'n--v+4r)

I'(ht-7)
T'tn—»+1) (R

(9) L] <K max V() Y < KHV(n) =70

N—he1Siint ——ha1

provided that & < nn. Now use (8) and (9) in (7), observing that, for
any choice of h which tends to oo,

Dh+r)y 1
Fhve) "

I'h+r) 1

Ty

in (8) and (9). Next choose h = integral part of e{W(n)/V (n)}'* with
& 50 small that h < nn, this being possible by (3)(iii). Then (7) gives for
all sufficiently large = (and h),

8, < K'{ W(n)+h'V(’ﬂ)} ~ 2K {V ()} "W ()},

hd -1
which is the required result (6) since & can be chogen arbitrarily small.

The case § =1, W(z) =x, V(x) =1 of Theorem I is the following
well-known result:

COROLLARY I,. A sequence s, bounded and summable (C,1) to 0 4s
summable (C,r) fo 0 for every r >0.

Theorem X for the sequence s} =s,—s, ; =8, instead of the
gequence $,, with 6 =1, W(z) =1, V(z) = 1/z, gives another well-
known result:

OOROLLARY I,. A sequence s,,, convergent to 0 and such that 8,— $p_y =
== 0(1/n) is summable (C, —1-7r) to 0 for every r such that 0 < r << 1.

COROLLARY I,. Suppose that, in Theorem I, we assume (3) (i) with
or without the unboundedness of W (n), (3) (iil), along with either (a) (3) (ii)
or (b) the restriction that V (x) is monotonic increasing. Then Theorem 1
can be restated with o changed to O in (4), O changed to Oy, in (3) and o chan-
ged to Oy in (6).

(Here we say (see e.g. [4]) that f = Or(p), ¢ being positive, if a pos-
itive constant K exists such that f > —Kg, and, similarly, that f =
= Ox(p), if f < Kg).
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COROLLARY I,. If a > —-1, p >4,
B3 = 0@ YR, 81 = 0L(n*?),  as
then, for any r such that 0 <r <1,

ST = O (netPHRy,

n — oo,

Lord deduces Corollary I, from Corollary I, with alternative (b),
where V (z) is monotonic increasing, taking in the latter s; = 8% instead
of 8,0 =1, W(z)=a""""", V(y)=2a""". This deduction is invalid
gince V() is not necessarily monotonic increasing, our assumption being
only that a+p > — 3. However, the same deduction from Corollary I,
with alternative (a) is valid.

THEOREM II. Let W (), V(x) be positive functions of & > 0 such that
(i) W (x) s monotonic increasing and unbounded,

(i) W@)/W)<Hif 0<a'—a <z (6<1),

i) V(@) /Vie) <H if 0 <o —a| <o (7<),

‘ (iv) (W @)V @} 0+ —

(10)

O(s) as © — oo,

where p is a non-negative integer, 0 << 6 <1. Then
(11) S = o{W(n)} as m oo,
(12) 8y = 0z{V(n)} as % — oo,

together imply

1 i
ds) = o[(T )} FFH )] s n > co.

Proof. This has a similarity to the proofs of Thecrem I and Vara-
darajan’s special case of Theorem II. However, it requires certain addi-
tional considerations which are brought out in the following demon-
stration of the partial conclusion given by (13) with oz instead of o.

In (2) (ii), let S;° be replaced by S%*! and hence s, by 85++°. Then,
with the definition of A%™! in (1), we have

azr(w 1+9)

Y Zm—-w 3) 2 AE

m=0

41
LA

(14) AZPSRHH = (n+1 = (p+1) k)

r=1

= 52A - 1;:11(”;(1)'5‘ 6)8'%";1,,

m=0

(N = nt+1—mk),
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where the inner sum is

%
‘11"7'~1-{5 got sy N 4017 qpal

L () S AT, 8%
2{ Ty & ”% oo

= (v—1- 6)[v is monotonic inereasing in ».
Hence, by Lemma B,

k
Ll (v —1+49) ,
2 T

k—1-9

— max |§8F
(B4

< 2I'(9)

=1
< 2I(8) max |84V =o{Wn-+1)} as =
ougntl
the last step following from (11) and (10) (i). Using this step in (14) and
then using 10 (ii), we geb

00,

(15) Viand cashul P 6(§{A,,,” ‘[)o{W (n4+1)} = o {W(n)}.
Next, in Lemma C (ii), let s, be replaced by S, and hence §5+° by
S5+l Then we easily get
(16) kpr(;f(']t)é) 8L — AP gEHI
+62 P(”‘}T(if 5’2 Y Sy v ) = T Ts 509
= n=l g1

In (16), the innermost sum of I, 1s, by (12) and (10), (iii),

(17) 8‘n+p+.-—v0— —vp+ .- + sn-—l"" Su

~E{V(n4-p+2—v—...—wp)+ ...+ V(n)} > —KH(p--1)kV (n)
for all large =, if & is chosen so that we have, for all large n,

(18) B—n' = n—(Np+2—ry— ... — )

K(p+Ek—p—2 <(p+Dk<gn (0 <5< 1).
Now we use in (16) the estimate for I, from (15) and the estimate
for the innermost sum of I, from (17). (16) then gives us, for all large n,

WP I'(k+ 6
(19) ——%—)&i S @YY () — L (+)a EH(p+1)kV (n),
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£ being any given small positive number.
tion of n) so that

We next choose £ (ax a fune-

1
{20) k = integral part of el W) e R
\ T(n) |

this choice of &k ensuring that k = ¢ 0(n) by (10), (iv), and hence that the
choice of &k in (18) is not violated. After dividing both sides of (19)
by KI(k+8)[T(k)~k"*" (k — co), we use the choice of %k in (20),
obtaining

»-
1 |V(n) ‘m o 1

21 A\',l, =
@h FH\W ()]

+e {W(n)lﬁﬁi l"(n)]

71” D=1 AWT
' [ 0 Tim |

= - 2}1‘"8{ v (u)}lm )’.:;; 1 {W (n )}-’77’léj

for all large ». This gives us (13) with Oy, instead of 0. Thus it only remains
to prove (13) with op instead of o, using (2), (i), and Lemma C (i),
instead of (2) (i), and Lemma C (ii), respectively in the above proof.

(10) (iii), and (14) in the form which involves W(n-1) show that

(10) (i), is superfluous for the preceding proof modified so as to yield (21)

with V{(n+41) and W(n+1) instead of ¥ (n) and W(n). II then (12)
is assamed with O instead of Oy, the preceding proof, modified as sta-
ted, is applicable to both s, and —s,, and we get the following corollary:

CorOLLARY IL. If, 40 Theorem TI, assumption (10) (ii), is omitied and
assumption (12) is strengthened by the substitution. of O for Oy, then conclu-
ston (13) will become

11 1 — __1-,

(13 8L = Ol V(‘)l+1)} _M-—ﬁﬁl{»W(,“«_Fl)}m-as-l l

Theorem IT is a Cesdro version of a theorem for Riesz means pro-
ved by Rajagopal and Minakshisundaram ([6], Theorem 1). Theorem II
With & =2 8, 8,1 = ;7 instead of s,, p+ d=7r, W(n)==2°, V(z)=1",
is esgentially a theorem of Bosanquet ([9], Theorem 6). The spe-
cial case of Theorem II with W(a) == 2"+, V(z)= 1, enables us to
change the hypothesis of summability (C,1) of s, in Corollary I, to the
hypothesis of summa.bility (C, ") for some r" >0. The special case of
Theovem IT, with s}==s,—s,_; instead of s,, W(z)==a""’, V(z)=1/x,
shows that we may change the hypothesis of convergence of s, in Corol-
lary T, to the hypothesis of summability (C, ') for some " > 0.

I wish to express my sincere thanks to Professor C. T. Rajagopal
for his kind help in the preparation of this paper.
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1 PROPOS D'UN THEOREME DE BOCHER SUR LE WRONSKIEN
PAR

Z. MOSZNER (CRACOVIE)

1l y a longtemps que Bocher a démontré (voir [1] et [2]) le théoréme
Q’aprés lequel les fonctions complexes fi(®),-..,fn(z) d'une variable
réelle &tant de classe O"* en tout point d'un intervalle ouvert I et telles
que l'on a pour le wronskien I'identité

hi o oo ;
0 0
on @ nécessairement aussi‘
I S AR A
W(f,,...,f,,,_l,fn)=i Bohohs By

i}ﬂn_l) fo-n 1) gin—1) |

Cette communication a pour but de démontrer qu’on peut atténuer
Phypothése de ce théoréme, en admettant senlement que les fonetions
fiy+er, fo sont différentiables jusqu’d Vordre n—1. Et voici la démon-
stration:

S0it @, un point arbitraire de lintervalle I. Considérons deux cas
suivants:

1. Les fonctions fi,...,f, sont linéairement dépendantes dans un
entourage de m,, c’est-d-dire qu’il existe un entourage E de z, et des nom-
bres constants ¢, ..., ¢, tels que

(1) Ec»fv(w) =0 sur B et Z (@) >0.
r=1

r=1

2. Les fonctions fy,...,f, ne sont linéairement dépendantes dans
aucun entovrage de .
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