90

A. GOETZ

$$A_1 = egin{pmatrix} 1/\lambda_0 & 0 & 0 & \dots & 0 \ 0 & 1/\lambda_1 & 0 & \dots & 0 \ 0 & 0 & 1/\lambda_2 & \dots & 0 \ 0 & 0 & 0 & \dots & 1/\lambda_n \end{pmatrix} \quad ext{ and } \quad A_2 = egin{pmatrix} \lambda_0 a_{00} & \lambda_0 a_{01} & \dots & \lambda_0 a_{0n} \ \lambda_1 a_{10} & \lambda_1 a_{11} & \dots & \lambda_1 a_{1n} \ \dots & \dots & \dots & \dots \ \lambda_n a_{n0} & \lambda_n a_{n1} & \dots & \lambda_n a_{nn} \end{pmatrix}.$$

 $A_1\epsilon H$ and A_2 are both non-exceptional matrices and $A=A_1A_2,$ q. e. d.

MATHEMATICAL INSTITUTE, UNIVERSITY OF WROCŁAW -

Recu par la Rédaction le 6.2.1963

COLLOQUIUM MATHEMATICUM

VOL. XI 1963 FASC. 1

ON A PROBLEM OF INTERPOLATION BY PERIODIC AND ALMOST PERIODIC FUNCTIONS

BY

E. STRZELECKI (WROCŁAW)

E. Marczewski and C. Ryll-Nardzewski have asked some questions on interpolation by periodic (almost periodic) functions. The general formulation can be made as follows:

A sequence $\{t_n\}$ of positive numbers is said to have the property (P) or (P') respectively in a class K of sequences of real numbers, if for every $\{\varepsilon_n\} \in K$ there exists a continuous periodic, or almost periodic (in the sense of Bohr) respectively, function f(t) ($-\infty < t < \infty$) such that

$$f(t_n) = \varepsilon_n$$
 for $n = 1, 2, ...$

The problem is to find conditions on $\{t_n\}$ implying (P) or (P'). The following results are known: Lipiński [2] has proved that every sequence $\{t_n\}$ for which

$$\frac{t_{n+1}}{t_n} \geqslant \frac{S+u_{n+2}}{u_{n+1}},$$

where $u_n > 0 \ (n = 1, 2, ...)$ and

$$\sum_{n=1}^{\infty} u_n = S < \infty$$

has the property (P) in the class K of all bounded sequences. Mycielski [3] has proved that every sequence $\{t_n\}$ satisfying the condition

$$t_{n+1} \geqslant (3+\beta)t_n$$
 for $n = 1, 2, ...,$

where β is any positive constant, has the property (P) in the class K_2 of all sequences taking values 0 or 1. The property (P') in the class of all bounded sequences can be deduced therefrom in view of the main approximation theorem. Ryll-Nardzewski [4] has shown that the sequence $\{3^n\}$ but no sequence with

$$0 < t_n < C \cdot 2^n$$
 (C any constant, $n = 1, 2, ...$)

has the property (P) in the class K_2 . Later Ryll-Nardzewski proved that the sequence $\{2^n\}$ has the property (P') in the class K of all bounded sequences. Hartman [1] has shown that for every integer k>0 the sequence $\{n^k\}$ $(n=1,2,\ldots)$ has not the property (P') in the class K_2 .

In this note the last result of Ryll-Nardzewski will be extended (Theorem 2) to all sequences $\{t_n\}$ with

$$t_{n+1} \geqslant (1+\beta)t_n \quad (n=1,2,..;\beta>0).$$

We put

$$q_n = \frac{t_{n+1}}{t_n}$$
 $(n = 1, 2, ...).$

In the proofs we will use closed intervals $[a_n, b_n]$ satisfying some of the following conditions:

$$(\mathbf{A}_1) \quad a_1 > 0,$$

$$(A_{n+1})$$
 $q_n a_n \leqslant a_{n+1} < b_{n+1} \leqslant q_n b_n$,

$$(\mathbf{B}_n) \quad [a_n, b_n] \subset \begin{cases} [0, \frac{1}{2}] \pmod{1}, & \text{if } \varepsilon_n = 0, \\ [\frac{1}{2}, 1] \pmod{1}, & \text{if } \varepsilon_n = 1, \end{cases}$$

 (C_n) there exists an integer m > 0 (depending on n) and a positive constant γ (independent of n) such that

$$b_{n+m} \leqslant \frac{t_{n+m}}{t_n} (b_n - \gamma).$$

LEMMA 1. Every sequence $\{t_n\}$ for which there exists any sequence of intervals $[a_n, b_n]$ satisfying conditions (A_n) , (B_n) and (C_n) for n = 1, 2, ... has the property (P) in the class K_2 .

Proof. Let us consider the closed intervals

$$\Delta_n = \left[\frac{t}{b_n}, \frac{t_n}{a_n}\right] \quad (n = 1, 2, \ldots).$$

From (A_{n+1}) it follows that $\Delta_{n+1} \subset \Delta_n$. Hence there exists a number

$$\delta \in \bigcap_{n=1}^{\infty} \Delta_n.$$

Obviously the inequalities

$$a_n \leqslant \frac{t_n}{\delta} \leqslant b_n$$

hold for every n.

Let us fix now an index n and choose the number m so that (C_n) is fulfilled. By (1) and (C_n) , we have the inequality

$$\frac{t_{n+m}}{\delta} \leqslant b_{n+m} \leqslant \frac{t_{n+m}}{t_m} (b_n - \gamma),$$

from which it follows that

$$\frac{t_n}{\delta} \leqslant b_n - \gamma.$$

Finally for n = 1, 2, ... we obtain the inequality

$$a_n \leqslant \frac{t_n}{\delta} \leqslant b_n - \gamma$$
,

where γ is a positive constant which does not depend on n. From (\mathbf{B}_n) we get then

$$\frac{t_n}{\delta} \epsilon \begin{cases} \left[\frac{1}{2}, 1 - \gamma\right] \pmod{1}, & \text{if } \epsilon_n = 1. \\ \left[0, \frac{1}{2} - \gamma\right] \pmod{1}, & \text{if } \epsilon_n = 0, \end{cases}$$

Let $\varphi(t)$ be a continuous function with period 1, such that $\varphi(t)=0$ in $[0,\frac{1}{2}-\gamma]$, $\varphi(t)=1$ in $[\frac{1}{2},1-\gamma]$ and $|\varphi(t)|\leqslant 1$. Evidently the function $f(t)=\varphi(t/\delta)$ satisfies the equations $f(t_n)=\varepsilon_n$ for n=1,2..., i.e., the sequence $\{t_n\}$ has the property (P) in K_2 , q. e. d.

Theorem 1. Every sequence $\{t_n\}$ satisfying the conditions

(2)
$$q_n \geqslant 1 + \alpha \quad (n = 1, 2, ...; \alpha > 0),$$

(3) if
$$q_n < 3$$
, then $q_{n+1} \ge (3+\beta) \frac{2}{q_n-1}$ $(\beta > 0)$,

(4) if
$$3 \leqslant q_n \leqslant 3+\beta$$
, then $q_{n+1} \geqslant 3+\beta$,

has the property (P) in K_2 .

In the proof we assume that

$$a\leqslant 2,$$

this restriction being inessential.

The proof of Theorem 1 is based on two lemmas.

LEMMA 2. Under the assumptions of Theorem 1 there exists a sequence of closed intervals $\{[a_n,b_n]\}$ satisfying for $n=1,2,\ldots,$ not only (A_n) and (B_n) but also the following conditions: if $q_{n-1}\geqslant 3$, then

$$(\mathbf{D}_n) b_n - a_n = \frac{1}{2};$$

if $q_{n-1} < 3$, then

$$(\mathbf{E}_n) \qquad \qquad b_n - a_n \geqslant \frac{1}{4} (q_{n-1} - 1),$$

where we put $q_0 = 3$.

Proof. The existence of an interval $[a_1, b_1]$ satisfying (A_1) , (B_1) and (D_1) , is obvious. Let us suppose that for any n = k the condition (D_k) holds. In this case

(6)
$$d_k = q_k(b_k - a_k) = \frac{1}{2}q_k.$$

Since $q_k \ge 1+a$, a>0, there exists a closed interval $[a_{k+1}, b_{k+1}]$ satisfying (Δ_{k+1}) and (B_{k+1}) . Moreover, in case when $q_k < 3$, by (6), the interval $[a_{k+1}, b_{k+1}]$ can be chosen so that the inequality

$$b_{k+1} - a_{k+1} \geqslant \frac{1}{2}(d_k - \frac{1}{2}) = \frac{1}{4}(q_k - 1)$$

holds, which coincides with (\mathbf{E}_{k+1}) . It is easy to see that in case $q_k \geqslant 3$ the condition (\mathbf{D}_{k+1}) can be fulfilled.

Let us suppose now that for n = k we have

$$q_{k-1} < 3$$
 and $b_k - a_k \geqslant \frac{1}{4}(q_{k-1} - 1)$.

In this case, by (3), we obtain

$$d_k = q_k(b_k - a_k) \geqslant (3 + \beta) \frac{2}{q_{k-1} - 1} \cdot \frac{q_{k-1} - 1}{4} > \frac{3}{2},$$

which implies the existence of an interval $[a_{k+1}, b_{k+1}]$ satisfying (A_{k+1}) , (B_{k+1}) and (D_{k+1}) . Thus Lemma 2 is proved.

LEMMA 3. The sequence $\{b_n\}$ of Lemma 2 can be chosen so that for every n the condition (C_n) with $\gamma = a\beta/12(3+\beta)$ holds.

Proof. Let us fix an index n. We shall distinguish three cases: (a) $1+a \leq q_n < 3$, (b) $3 \leq q_n < 3+\beta$, (c) $q_n > 3+\beta$.

In case (a), by (3), we have

(7)
$$q_{n+1} = (3+y)\frac{2}{q_n - 1}$$

with

$$(8) y \geqslant \beta.$$

Since $q_n < 3$, we obtain from (\mathbf{E}_{n+1})

$$b_{n+1}-a_{n+1}\geqslant \frac{1}{4}(q_n-1)$$
.

Hence, by (7),

$$d_{n+1} = q_{n+1}(b_{n+1} - a_{n+1}) \geqslant \frac{3}{2} + \frac{1}{2}y$$

Consequently there exists such b_{n+2} as satisfies not only (A_{n+2}) , (B_{n+2}) , and (D_{n+2}) , but also the inequality

$$\begin{split} b_{n+2} &\leqslant q_{n+1}b_{n+1} - \frac{y}{2} = q_{n+1}\bigg(b_{n+1} - \frac{y}{2q_{n+1}}\bigg) \\ &= q_{n+1}\bigg[b_{n+1} - \frac{y\left(q_{n} - 1\right)}{4\left(3 + y\right)}\bigg]. \end{split}$$

Hence, in virtue of (8) and (2),

(9)
$$b_{n+2} \leqslant q_{n+1} \left[b_{n+1} - \frac{a\beta}{4(3+\beta)} \right].$$

By (9) and (A_{n+1}) , we obtain

$$b_{n+2}\leqslant q_{n+1}q_n\bigg[b_n-\frac{a\beta}{4q_n(3+\beta)}\bigg]\leqslant \frac{t_{n+2}}{t_n}\bigg[b_n-\frac{a\beta}{12(3+\beta)}\bigg],$$

which coincides with (C_n) with m=2.

In case (b) one has, by (4),

$$q_{n+1} \geqslant 3+\beta$$
.

Let us put

$$q_n = 3 + z \quad (z \geqslant 0),$$

$$q_{n+1}=3+u \quad (u\geqslant \beta).$$

In quite a similar way as in case (a) we can show that b_{n+1} and b_{n+2} can be chosen so that besides the conditions (A_{n+1}) , (B_{n+1}) , (D_{n+1}) , (A_{n+2}) , (B_{n+2}) , (D_{n+2}) the following inequalities would be true:

$$(12) b_{n+1} \leqslant q_n \left[b_n - \frac{z}{2(3+z)} \right],$$

$$b_{n+2} \leqslant q_{n+1} \bigg[b_{n+1} - \frac{u}{2(3+u)} \bigg].$$

(In the proof of (12) it must be taken into consideration that $q_{n-1} \ge 3 + \beta$ and so we have (D_n) .) By (13), (12), and (10), we obtain

$$egin{align} b_{n+2} &\leqslant q_{n+1}q_nigg[b_n - rac{z}{2(3+z)} - rac{u}{2(3+z)(3+u)}igg] \ &= rac{t_{n+2}}{t_n}igg[b_n - rac{1}{2} + rac{1}{3+z} + rac{3}{2(3+z)(3+u)}igg]. \end{split}$$

Hence, by (5), (10) and (11),

$$\begin{split} b_{n+2} &\leqslant \frac{t_{n+2}}{t_n} \bigg[b_n - \frac{1}{2} + \frac{1}{3} + \frac{1}{2(3+\beta)} \bigg] \\ &= \frac{t_{n+2}}{t_n} \bigg[b_n - \frac{\beta}{6(3+\beta)} \bigg] \leqslant \frac{t_{n+2}}{t_n} \bigg[b_n - \frac{a\beta}{12(3+\beta)} \bigg], \end{split}$$

i. e., in this case the condition (C_n) for m=2 is also satisfied.

In case (c) we apply the inequality (9) or (13), respectively, according to whether $q_{n-1} < 3$ or $q_{n-1} \ge 3$. Replacing in both of them n by n-1 we get (C_n) with m=1. Thus Lemma 3 is proved.

Theorem 1 is now a direct consequence of Lemmas 1 and 3.

THEOREM 2. Every sequence $\{t_n\}$ for which

(14)
$$t_{n+1} \geqslant (1+a)t_n \quad (n=1,2,\ldots; a>0)$$

has the property (P') in the class K of all bounded sequences.

Proof. Obviously we may suppose (5) without loss of generality. Let us denote by s a positive integer such that

(15)
$$(1+a)^{s-3} < \frac{7}{a} \le (1+a)^{s-2}.$$

We shall choose a subsequence $\{t_{n_i}\}$ satisfying the conditions

(16)
$$t_{n_1} = t_1, \quad t_{n_{i+1}-1} < (1+a)^s t_{n_i} \leqslant t_{n_{i+1}}.$$

The sets

$$U_k = \bigcup_{i=1}^{\infty} \{t_n : (1+\alpha)^{k-1} t_{n_i} \leqslant t_n < (1+\alpha)^k t_{n_i} \}$$
 $(k = 1, ..., s)$

are disjoint. Hence every t_n belongs to one and only one of them.

Let us fix now an index k. We shall prove that if t', $t'' \in U_k$, t' < t'', then

$$t^{\prime\prime} \geqslant 7 \frac{1+\alpha}{\alpha} t^{\prime}.$$

We note that t' and t'' cannot satisfy the inequality

$$(1+a)^{k-1}t_{n_i} \leqslant t' < t'' < (1+a)^k t_{n_i}$$

In fact, from this inequality it follows that

$$t' < t'' < (1+\alpha)t'.$$

which contradicts (14). Consequently there exists an index i such that

$$(18) t' < (1+a)^k t_{n_i},$$

$$(19) t'' \geqslant (1+a)^{k-1} t_{n_{k+1}}.$$

By (19), (16), (18) and (15), we have (17), since

$$t'' \ge (1+a)^{k-1} t_{n_{i+1}} \ge (1+a)^{s-1} (1+a)^k t_{n_i} > (1+a)^{s-1} t' \ge 7 \frac{1+a}{a} t'.$$

As a consequence of (17) and (5) the inequality

$$\frac{t''}{t'} \geqslant 7 \frac{1+a}{a} \geqslant \frac{21}{2}$$

holds for every $t', t'' \in U_k, t'' > t'$.

Now let us fix the indices k and l ($k \neq l$) and consider the subsequence of $\{t_n\}$ consisting of all the elements x_n ($n=1,2,\ldots$) belonging to the set $U_k \cup U_l$. We shall show that the subsequence $\{x_n\}$ fulfills the assumptions of Theorem 1. For this purpose it is enough to prove that conditions (3) and (4) are satisfied for $\beta=0,1$.

1º If both elements x_n and x_{n+1} belong to one of the sets U_k or U_l , then we have, by (20),

$$q_n = \frac{x_{n+1}}{x_n} > 3.1$$

and there is nothing more to prove.

2° Let us assume that $x_n \in U_k$, x_{n+1} , $x_{n+2} \in U_l$. In this case, by (20), we have

(21)
$$q_{n+1} = \frac{x_{n+2}}{x_{n+1}} \geqslant 7 \frac{1+a}{a} \geqslant \frac{21}{2}.$$

Hence, assuming that $q_n \ge 3$, we see that (4) is satisfied. So is (3) in virtue of (14) and (21) since putting $q_n < 3$ we have

$$3,1 \cdot \frac{2}{q_n-1} \leqslant 3,1 \cdot \frac{2}{\alpha} < \frac{7}{\alpha} < q_{n+1}.$$

There is still one case to be considered:

 $3^{\circ} x_n, x_{n+2} \in U_k, x_{n+1} \in U_l.$ By (21) and (14),

$$q_{n+1}(q_n-1) = q_{n+1}q_n\left(1-\frac{1}{q_n}\right) = \frac{x_{n+2}}{x_n}\left(1-\frac{1}{q_n}\right)$$

$$\geqslant 7\frac{1+\alpha}{\alpha}\left(1-\frac{1}{1+\alpha}\right) = 7.$$

Hence

$$q_{n+1} \geqslant \frac{7}{q_n - 1} > 3, 1 \cdot \frac{2}{q_n - 1}$$
.

Therefore (3) is fulfilled. Supposing that $3 \le q_n < 3,1$, by (20), we obtain

$$q_{n+1} = \frac{q_n q_{n+1}}{q_n} = \frac{x_{n+2}}{x_n} \cdot \frac{1}{q_n} \geqslant \frac{10,5}{3,1} > 3,1$$

and so (4) is also fulfilled.

Since the sequence $\{x_n\}$ satisfies the assumptions of Theorem 1, it has the property (P) in the class K_2 . Hence there exists a continuous periodic function $g_{k,1}(t)$ such that

$$g_{k,l}(t) = egin{cases} 1, & ext{if} & t \in U_k, \ 0, & ext{if} & t \in U_l, \ & |g_{k,l}(t)| \leqslant 1. \end{cases}$$

Therefore the function

$$g_k(t) = \prod_{\substack{l=1\\l\neq k}}^s g_{k,l}(t)$$

is an almost periodic function in the sense of Bohr satisfying for n = 1, 2, ... the conditions

(22)
$$g_k(t_n) = \begin{cases} 1, & \text{if} \quad t_n \in U_k \\ 0, & \text{if} \quad t_n \notin U_k, \end{cases} |g_k(t)| \leqslant 1.$$

Taking into account (20), by the Theorem of Mycielski [3], each of the sets U_k $(k=1,2,\ldots,s)$ has the property (P) in the class K_2 . Thus, given a sequence $\{\varepsilon_n\}$ with $\varepsilon_n=0$ or 1, choose a continuous periodic function $f_k(t)$ satisfying

$$f_k(t_n) = \varepsilon_n, \quad ext{if} \quad t_n \in U_k,$$
 $|f_k(t)| \leqslant 1.$

Hence, according to (22) the function

$$f(t) = \sum_{k=1}^{8} g_k(t) \cdot f_k(t)$$

takes the values ϵ_n in t_n . This shows that the sequence $\{t_n\}$ has the property (P') in the class K_2 . Consequently, by the main approximation theorem for almost periodic functions, the sequence $\{t_n\}$ has the property (P') in the class K of all bounded sequences, q. e. d.

REFERENCES

[1] S. Hartman, On interpolation by almost periodic functions, Colloquium Mathematicum 8 (1961), p. 99-101.

[2] J. Lipiński, Sur un problème de E. Marczewski concernant les fonctions périodiques, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 8 (1960), p. 695-699.

[3] J. Mycielski, On a problem of interpolation by periodic functions, Colloquium Mathematicum 8 (1961), p. 95-97.

[4] C. Ryll-Nardzewski, Remarks on interpolation by periodic functions, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 11 (1963), p. 271-275.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, WROCLAW

Reçu par la Rédaction le 6.2.1963