7;~>7 ) 7 F. B. J

Obviously M — K is econnected and if K contained a point accessible
from the complement of 3, then M — K would be strongly connected.

It may be well to point out in summary that sinee all psendo-ares
are homeomorphic [3], no generality has been lost, and, sinee no pseudo-
are separates the plane and each contains a point accessible from its
complement, it follows that each plane pseudo-are (regardless of how it
is embedded in the plane) contains a connected subset which does not
cut the plane and on which there exists a homeomorphism of period
2 with no fixed point.
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AN INTERSECTION PRUPERTY
OF SETS WITH POSITIVE MEASURE
BY

P.ERDOS8, H. KESTELMAN, axp C. A. ROGERS (LONDON)

1. If 4,, 4,,... are Lebesgue-measurable sets of real numbers in
the interval I = [0, 1] with measures satisfying

u(dy) > 9 >0,
the set

is measurable with measure at least 5. So it is certainly possible to choose
=00

a sequence n; < N, < ... such that the intersection (‘]An is non-empty.

=

But (see the example in § 2) there may be no such sequen('e for which
the intersection has positive measure. However, we show that the sub-
sequence can be chosen to ensure that the interseetion is uncountable.
More precisely, we prove (see §§3 and 4)

THEOREM 1. Suppose u is a positive number and 4,,A,,... are
Lebesgue-measurable subsets of the intervel [0,1] with lim supu(4,) >
Then there is a Borel set S with u(S) = 7, and a sequence ¢ < gy <<
such that every point of 8 is @ point of econdensation of the sel

U M 4g,.

=l r>d
s0 that every open set containing points of 8 also contwins a perfect subset
of A, y N Ag .o for some j.
We arrange our proof so that it can be tuvmlly generalized (see §5).
It is natural to ask if, under the conditions of Theorem 1, one can
say anything about Hausdorff measures of the set

N 4,

i=1


GUEST


76 P. ERDOS, H. KESTELMAN AND C. A, ROGERS

for suitably chosen sequences ¢y, ¢s, ... As far as we can see, it may be
that, for every strictly increasing continuous function ¢(t) with ¢(0) = 0,
there is a sequence of sets 4,, 4,, ... satisfying the conditions of Theo-
rem 1 and such that, g-m denoting the Hausdorff measure generated
by ¢, we have
¢~m(ﬂ A.q?,) =0
=1
for every sequence ¢, ¢, ... But, on the other hand, it may be that, for
every such ¢ (provided that ¢-m(I) = oo) and every sequence of gets
satisfying the conditions of Theorem 1, there will be a sequence ¢, ¢, ...
such that
rp-m(ﬂAqi) =z co.
i=1
Perhaps it is most likely that the truth lies between these two extre-
mes and depends in some way on the value of the parameter 5 between
0 and 1 (P 442) (*).

2. Before proving the theorem, we discuss a gpecial example. Let
K4 denote the set of all numbers of the form

4 27 4y 270 g, 27

with @, = 0 and a, = 0 or 1 for all other values of n. Oleaaly u(K,) = }
and the intersection of any N sets K, has measure 2~~. Hence the inter-
section of any infinite subsequence of the sets has measure zero, and so
has the set

for any sequence ¢, < ¢y < ...

U N K,

=l 127

In this instance we may verify the theorem by taking ¢, = 2r and
8 =[0,1], since an open subset of [0,1] contains, for some suitable
integers j and m, the perfect set of all numbers of the form

oo
m 2~ @-1 2 b, 2=r+1

=7

0l
where b, = 0 or 1 for » = j, and this perfect set is contained in M Ksp-
The set re=f

U N Ky,
i21 raf

oo
ig the set of numbers of the form Ya, 27" with a, =0 or 1 for all r,
r=l

and a, = 0 for all sufficiently large r.

(*) Added in proof. The second extrems turned out to hold true; see P. Erd 68
and 8. J. Taylor, The Hausdorff measure of the intersection of sets of positive
Lebesgue measure, Mathematika 10 (1963), p. 1.9,
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3. It will be convenient to introduce the following conventions:
(a) A, with or without a suffix, will denote an infinite set of posi-
tive integers;
(b) if H,, B,, ... are sets, then 4 {E,} will denote QE,,,;
n

(e) if A and B are subsets of I, we say that 4 avoids Bif u(A ~B) =90.

We prove

LieMMA 1. Suppose that By, E,, ... are measuroble subsets of I =
= [0, 1] with lim infu(B,) = 5 > 0. Then there is a Borel subset D of 1
with u(D) 2 7, and a set A, such that every Borel subset of D which has
positive measure avoids only a finite number of B, with n in A"

Proof. Suppose the lemma is false. This implies that
(1) if A is any Borel subset of I with u(4) > 5, and A" is any infinite

set of positive integers, then A contains a Borel set with positive

measure which avoids &, for infinitely many » in A",

Applying (1) with 4 = I, we see that I contains a Borvel set T, with
u(T) >0, which avoids B, for infinitely many ». Take 7 to be such
a set 7T, chosen from among the possible sets T' so that all the other pos-
gible sets T have measure less than 2u(T,). Let 47 be the set of #» such
that E, avoids T,. Suppose that, for some %k > 1, disjoint Borel subsets
Ty, Tsy ..., Ty of I, and sets & > A, > ... o A7, have been chosen so
that Thv Tyw ...w Ty, avoids B, for all n in A%, Then I— (v ... Ty)
contains almost all points of some sets B, with n arbitrarily large, and
so its measure is at least 7. We apply (1) with 4 = I— (T Tav ... Tg)
and A4 = A7, and choose a Borel et Ty, contained in I and disjoint
from Ty, Ty, ..., Ty, and a subset A%, of A7, such that Ty, avoids B,
for all % in A,,, but all Borel sets T' contained in I and disjoint from
Ty, Ty, ..., Ty, which avoid H, for infinitely many » in 4%, have measure
less than 2u(Ty.,). Then Ty, v Ty ..o Thw Ty avoids B, for all nin A% ;.
Since the conditions are satisfied when k =1, we may suppose that
Ty, Ty, ... and Ay, A, ... have been chosen inductively in this way.

Sinece

a{I— (T Tyo ..o Ty) =,
for all k&, we have

M(I—(TluTzu )) = 9.

So we may apply (1) with A =I—(T,vTyv...) and A =4,
defined to be the set my, 1y, ..., where n; is the least integer in 47, n,
is the least in .#°, which exceeds #,, and so on. There will be a Borel set
F contained in A, with p(F) >0, which avoids B, for infinitely many
n in A,. Now, if we choose any positive integer %, all-but a finite number
of integers in 4, are in A%, and so F avoids B, for infinitely many »
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in A7, and at the same time F <« I — (1w Ty v ... T}). Hence u(F) <
< 2u(Tyyy). Since Ty, T, ... are disjoint Borel subsets of I, and pu(I) =1,
it follows that w(T%.;) =0 as k — co, and this contradiets u(#) > 0.

4. Proof of Theorem 1. Since lim supu(4,) = 9, and we are concer-
ned with the existence of a subsequence with a certain property, we may
without loss of generality suppose that lim infu(4,) > . For each r
we may choose K,, a closed subset of A,, with

w(Ky) = u(4,)—(1[r).

Then liminfu(K,) > 5. So, by the lemma, there is a Bovel set D
with (D) > » and a set A" such that every Borel subset of D with posi-
tive measure avoids K, for only a finite number of » in A", Let Iy, I, ...
be a countable base for the open subsets of I'; for example, take I,, I, ...
to be an enumeration of the open subintervals of I with rational end-
-points. Take

8 =D-J'L,

the union being taken over all r for u(D~ I,) = 0. Then § is a Borel
set with
p(8) = u(D)— D w(DAL)=puD) >,
WDALp)=0

and every open set which meets S does so in & set of positive measure.

Now let ¢ be an open set with G~ 8 s @. Then u(G~8) >0, and
G~ 8 avoids K, for at most a finite number of » in A", Also, as u (G~ 8) >0,
we can choose two disjoint closed subsets H, and H, of @, each intersec-
ting § in a set of positive measure (see § 5). Then H,~ 8§ avoids K, for at
most a finite number of # in A", for a = 0 or 1. Thus we can choose »,
in A so that both

pHon8nK,) >0 and pH;~S~K,) >0.

By repeating this argument, we see that there exist four disjoint
closed sets, Hy, and Hy, in H,, and H,, and Hy; in H,, and an integer
¥y, larger than », in 4" such that

w(SnHypn K, ~K,) >0

for all four closed sets H,, a, = 0 or 1. It follows, by induction, that
for each integer & > 2 we can choose a system of 2% digjoint closed sets

(1) Hewy oy 01 @2y 0ay 0 =0 or 1,

and an integer v in A7, so that », >,

Halaz_,,nk < Ha1a2,,,uk__1, Oy, Ogyouvy Qp = 0 or 1,

icm®
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and
(8~ Hgygy o " K, nK,,~ ...~ K,) >0,
for ¢y, dgy ..., ax = 0 or 1. For each infinite sequence o, @, ... of 0’5

and 1’s, write

X, =H r\K,,lf\K,,zr\...r\K

ayoy,..af )3

for k =1,2, ... Then the sets X,, X,, ... are closed and non-empty and
they decrease. So their intersection contains at least one point. As the
sets (1) are disjoint, for each fixed %, it follows that disjoint sets () Xy
correspond to distinct sequences aj, as,... If 7 is the set of the inte-
gers vy, v, ..., the closed intersection

N K} = K, ~nK,~...

contains this uncountable system of disjoint non-empty subsets of &,
and therefore contains a perfect subset of G-

Let I, I,,... be a countable base for the open sets of I, and let
G4, @, ... be an enumeration of those sets of the base that meet §. By
the last paragraph, /4" contains a subset .47 such that A4, {K,} ~G, con-
tains a perfect set. Similarly 4 contains A7, such that A7, {Ep} ~Gs con-
tains a perfect set. Continuing in this way, we obtain a decreasing sequence
N1 DNy D ... such that #,{K,}~G, contains & perfect subset for
r=1,2,... Take 4" to be the set ¢, ¢», ..., Where g, is the least in 47,
and gr,, is the least in 45, which exceeds ¢,, for r =1, 2,... Now the
SeqUeNce i, ¢s, - .. and the set § satisfy the conditions of the theorem. For,
if @ is any open set which meets § at a point, 4 say, there is a seb I, of the
bage with zeZ, and I, c G. So for some j we have I. = Gj. Hence

G {qu n 'Aq;,'.H oo } = G:l' ~ ‘/V:f {Kn}
and so contains a perfect set.

5. Theorem 2. Let X be a compact set. Suppose the topology in X has
o countable base. Let u be o Carathéodory outer measure on X with the prop-
erties

(a) p(X) =1,

(b) (@) =0 for each x in X,

(e) Borel sets in X are u-measurable,

(Q) if B is u-measurable and & > 0, then there is an open set G with .

Bc@and p(@ <u(BE)te.

Suppose 7 is a positive number and Ay, Ay, ... are u-measurable sub-
sets of X with lim supu(4,) = 5. Then there is a Borel set 8 in X with
u(8) = n, and a sequence ¢ < gy < ..., such that every point of 8 is a point
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of condensation of the sei

un A!l,d

izl =]

and every open set containing a point of 8 also contains a perfect subset
of Adyrdg,,~ ... for some j.

Proof. Tt is clear how nearly all the steps in the proof of Theorem 1
have to be modified to provide a proof of Theorem 2; the only difficulty
is in the choice of the disjoint closed subsets H, and H; and the subse-
quent choice of the subsets (1) for % = 2, 3, ... These choices are justi-
fied by the following lemma, which we prove by using one of the ideas
we have already used:

LeMMA. Under the conditions of Theorem 2, if A i8 a u-measurable
set with u(4) >0, we can choose two disjoint closed subsets H, and H,
of A with u(H,) >0, u(H,) >0.

Proof. As A is y-measurable and u(4) >0, we can choose a closed
set B contained in A with u(B) >0. Let X;, X,,... be a countable
base for the open sets of X. Take

0 =B—U'X,,
the union being taken over all the integers r for which u(B~ X,) = 0.
Then C is closed and

u(0) = pu(B)— p(BnX,) = u(B) >0.
HBAZ)=0

Hence ¢ containg at least one point, ¢ say. As ,u((o)) = (}, we can
choose an open set @ with c<@ and u(@) < u(C). Choose r so that ceX,
and X, = @. Then, as ¢eX,, we have u(B~ X,) >0, so that

w(Cn@) Zu(B~X,) >0.

Finally, take H, to be a closed subset of O ~@ with u(H,) >0, and
take H; = O~ (X —@). Tt is easy to verify that these sets satisfy our
requirements.
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ON A COMBINATORICAL PROBLEM OF K. ZARANKIEWICZ

BY
§. ZNAM (BRATISLAVA)

Zarankiewicz [6] raised the following problem. Let A, be a square
matrix of order =, consisting exclusively of 1’s and 0’s; j is a positive
integer with 2 <<j <<®. The problem consists in finding the smallest
number of 1’s still assuring the existence of a minor of order j, consisting
exclusively of 1’s. Liet us denote this number by %;(n).

L. Reiman in [5] solves this problem for j = 2 and proves that

ka(n) < t(n-+nVdn—3)+1.
Hyltén-Cavallius [3] proves the inequality

0

2) ky(n) < 14 (j—1)n-[(j— 1)@ =007,

where [a] is the integer part of a.
This paper deals with improvement of this resnlt. We prove namely
that

3)

y(n) <1+ [’ ot (j——l)"’n(”—””]

which is somewhat better than (2), e.g. (2) gives k;(8) < 56 and (3)
implies %,(8)<c 48. However, (3) is worse than (1) for j = 2.

Let k; denote the number of 1’8 in the i-th row of 4,,. It is obviously
sufficient to deal with matrices with
(4)

Bk >... 2k, =j—1.

To prove (3) we need three lemmas.

LeMMA 1. For an arbitrary integer n > 0 and any real a;, b; (¢ = 1, 2,
cees ) With @y =@y > ... =0, ond by = by > ... > b, we have

n

nZa'ibi Zzaizbi

n
A=) i=1 F=1

(see e.g. [2], p. 43, theorem 43).
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