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there exists a compaet set X C h(S,—D,) with 0 < dimX. So dimX
< dimg(X) by the same Hurewicz theorem, and ¢(X) C Y Dby (ii). We
get 0 < dimY.

Questions. We have shown by the example (see p.46) that for
some mapping f which lowers the dimension of 8, the set"D; can be dense
in §,,. Then dim(8,—Dy) < n—1 (see {1], p. 353). Actually, the set 8, —D,
hags the dimension equal to n—21. This suggests the following question:

P 390. Is it true that dimf(8,) <n—1 tmplies n—1 < dim(8,—D,)
Jor every mapping f of the sphere 8, (n =3,4,...)%

The proposition trivially helds for » = 1, and follows from the Ilu-
rewicz theorem for » = 2 (see [1], p. 67).

Finally, one eould ask in connection with Theorem 2:

P 391. Does the inequality

0 < dim {y: n— dimf(8,) < dimf*(y)}

hold for every mom-constant mapping f of the sphere S, (n = 3,4,...)%

Since 0 < yields 0 < dimf(8,) for any non-constant f, ‘uhe set {}
in P 391 is equal to f(8,) for n = 1 and to f(8,) or {y: 0 < dimf~"(y)}
for # = 2. Thus, for n = 1 or 2, we get the mequahty in P 391, according
to Theorem 2.
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ON THE IP°-SPACE OF A LOCALLY COMPACT GROUP
BY

M. RAJAGOPALAN (NEW HAVEN, CONN,)

In the paper [5] Zelazko has shown that if & is a loeally compaect
Abelian group which is Hausdorff, then L?(&) for p > 1 is an algebra
under convolution if and only if ¢ is compaet. In this paper I extend
this result to the case when G is discrete but not Abelian and p > 2.
In the commutative case a new proof is given for the fact that L3(&)
is an algebra under convolution if and only if & is compact, based on
only measure theoretic considerations and Fourier transform. Theorem 1
is of its own interest and the author has not seen any published state-
ment of it so far. T wish to express my thanks to Professor Ioneseu Tulcea
who drew my attention to the paper [5].

Meagure theoretic notions are generally taken from [1]. Group theo-
retic notions are as found in either [2] or [3].

If (X, 2, u) is a measure space we write IP(X) or L”(u) for the
space of complex valued funections f(z) on X such that f If(@)|Pdu(z) < oo,

where p > 1 and = co. Similarly, L*(X) or L®(u) wﬂl denote the space
of all essentially bounded measurable functions on X. If f(z)eL”(X),
then ||fll, will denote the usual norm in I”(X) for p > 1. If @ is a group
with a left Haa.r measure u, then f*g will denote the convolution pro-
duet f fly g(y)du(y) provided f(x) and g(z) are measurable and the

mtegral exists for almost all z¢@G.

Let (X, 2, u) be a measure space. A set SeX is called an atom if
u(8) 5 0 and if for every HeX and C 8§ we have either u(§) = u(E)
or u(B) = 0. X or u is said to be purely atomic if every set of non-zero
o-finite measure ¢an be expressed as the union of atoms. Two sets B, FeZ
are called equivalent if u(E—F) = uw(F—E) = 0.

Hereafter we consider a fixed measure space (X, X, u) until theorem 1.

Now we state the following lemma without proof:

LemmaA 1. If every set of mon-zero measure contains an atom, then u
is purely atomic.
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. of sets X and of

LeMMA 2. If there ewists o sequence Iy D By D
) & LX) for amy

non-zero measure such that limu(H,) = 0, then MZX

T->00

p >1. Similarly, if there exists a sequence By C By C ... of sets X and of
finite measure such that lim u(H,) = oo, then LMZX) $ L” X) for any p > 1.

N—>00
Proof. Without loss of ge‘nemlity we can assume in the first case
that 0 < u(B,) < (3" and u(FH, ) # /.t 1) for mo=2,3,... Then de-
fine f(x) = 0 outside B, and f(z) = (1/n*)u(B,—B, ;) in Iv,, —~ 10,y for
all » = 2,3, ... Then f(z) belongs 1:0 L' but not to P for any p = 1.
Similarly we can prove the other result.

THEoREM 1. (i) For any p > 1 we have LX) C L"(X) if and only if
the measure is atomic, and the set of measures of oll atoms has a strictly
positive lower bound whenever this set is not emply.

(il) For any p >1 we have L*(X) D I"(X) if and only if every sel I
of o-finite measure has finite measure and the set of measures of all sets
of finite measure is bounded above.

Proof. (i) Let L'(X)C LP(X) for some p >1. Let I be any seb
belonging to X and of non-zero measure, if one such exigts. Then either I
is an atom or there is a set H X sueh that 0 < u(#,) < fu(H) and
u(E, )'< co. Now if B, is not an atom, then there exists o get I, C K,
such that 0 < u(B;) < $u(#,). Proceeding like this we get that either N
containg an atom or that there iz a sequence H, D H, D... of sets of
non-zero meagure such that limy(F,) = 0. But this latter possibility

N—>00
is ruled out by lemma 2. Hence, by lemma 1, x is purely atomic. Hence,
by lemma 2, the set of the measures of the atoms, if any, must have
a strictly positive lower bound.
We can prove (ii) similarly.

THEOREM 2. Let G be a locally compact Hausdorff topological group. ’

Let pu be its left Haar measure. Then L'(G) C IP (@
only if G is discrete.

Proof. Since @ is Hausdorff and locally compact we gee that given
an open set U containing more than one point we can find an open set V
such that ¥ is compact and ¥ C U and V  U. From this and Jemma 2
we get that if ¢ iy not diserete, then LY (@) & L*(&) for any p >>1. The
converse is obvious.

) for some p > 1. if and

As a simple eonsequence of Theorem 2 we obtain & case of Zelazko's
theorem:

CoROLLARY. If @ is & locally compact Abelian Hausdorff topological
group with Haor measure u, then L*(G) is an algebra under oconvolation
if and only if G is compact.

icm
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Proof. If & is compact then clearly L*(@) is an algebra under con-
volution. Now let us assume that @ is not compact. Let & be the character
group of @& with its Haar measure. Then @ is not discrete, whence, by
theorem 2, L*(@) ¢ L*(@). Hence there is a function f(x) in LY(&) and
not in Iﬂ(G ). Let @(x) be the inverse Fourier transform of Vlf(x)l. Then

z)eL2(@) since V|f(y)| eL*(&). But o *p¢L?(Q@) for if it did then its
Fourier transform which is |f(y)| should belong to L2(&) which is not
the case. Hence L*(@) is not an algebra under convolution. )

THEOREM 3. Let G be a discrete group. Let u be its Haar measure. Then
IP(@) is an algebra under convolution for p > 2 if and only if G is finite.

Proof. If ¢ is finite, then clearly L”(@) is closed under convolution
for all p >1. Now let L”(G) (p > 2) be closed under convolution. By
simple reasoning we infer that the convolution is a continunous operation.
The function e,(x) which is equal to one at the identity of @ and zero
elsewhere is an identity of L”(@). Thus the operator norm [||f]||, =
= sup ||f * gll, is equivalent to the norm ||f|, and, consequently,

lglp=1
Iflls < 1Al < Clflly
for a constant C. Hence we get the inequality
Ife* falle < NI * Fallls < HIFddllp HIfallly << C2N il 1 fall s

which shows that by replacing the Haar measure u by C2u we can make
I”(G) a Banach algebra. In the sequel we shall assume that the Haar
measure p is so chosen that ||f||, is submultiplicative. .

First consider the algebra L*(@). Defining f (z) = f(z™Y), L2(@) is
made an H*-algebra with unit element [2]. Hence from [4] we infer
that L*(@) is finite dimensional. Therefore, @ is finite.

Now let f(x),g(x)eL”(¢) (p >2) and h(z)eL?(@), where 1/p--
+1/g = 1. Then ff g(y'z)du(z) L (§) and

uff 9y e) dp (@)l < |l lgll-

Hence the integral

fh (1) du(y) [ff gy~ o) du ()]

exigts and

Uf(W)de) (f,q(:u“1 V() du(y))| < 181l gl 1Bl -
[

From this we get that, if f(z) < L* (@) and h(x) < L&), then f * he L%(@).
In particular, taking the funetlon e,(2) above for h(z) and f(z) to be

any funetion in L (@) we get f(#) = f * ¢, L(G), whence I7(@) C LUG).
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]

But p >2, and consequently ¢ <2 <p. Hence L*(@) CL"(4), and
consequently IP(G) = L*(G) = LY(@). Thercfore I2(G) is an  algebra
under convolution.

Hence @ is finite.

Note. The author has proved after submitting this paper that for
any loeally compact group G the space I"(@) is closed for convolution
for some p > 2 if G is compact.
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In [3] it was shown that if @ is a locally compact Abelian group,
then L,(G) for p >1 is a Banach algebra under convolution if and only
if @ is compact. Further, Rajagopalan [2] extended this result to the cage
when @ is diserete but not Abelian and p > 2. In this paper we prove
this result for an arbitrary locally compact group under the assumption
that p > 2.

Let G be a locally compact group. Its elements will be denoted by
t, r; group operation will be written multiplicatively. Unit element will
be de noted by ¢. If .4, B are subsets of ¢, then 4B is a set of all elements
of G written in the form t-7, where ted, 7B, and A7 is defined as the
set of all 17, such that ted. U, V will stand for compact neighbourhoods
of the unit ¢. It is known that for every neighbourhood U, there exists
a symmetric neighbourhood ¥V C U (i.e. such that ¥ = V') for which
72C U. p will denote the left invariant Haar measure on G. We recall
that if A is open and B compact, then u(4) >0, and u(B) < co. Gen-
erally speaking the left invariant measure is not the right invariant one,
but there exists such a continuous function 4(¢), called modular func-
tion, that p(At) = u(A)4(t) for every measurable 4, and t<G. We have
A(t) >0 for every te@, 4(¢) =1, and

(1) Aftz) = A A (7).

In the case when A(f) =1 the group G is called unimodular. In
this case we have

2) [ft)u(an) = [ft)yu(@n) = [fxul@) = [f(x)p(d)

for every integrable funection f defined on G and te@. IL,(G) will denote
the space of all complex functions (or more exactly of equivalence
classes) such that

lelly = ([lo@Pu(@n)™ < oo.
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