A. LELEK

48

there exists a compact set $X \subseteq h(S_n - D_h)$ with $0 < \dim X$. So $\dim X \le \dim g(X)$ by the same Hurewicz theorem, and $g(X) \subseteq Y$ by (ii). We get $0 < \dim Y$.

Questions. We have shown by the example (see p. 46) that for some mapping f which lowers the dimension of S_n the set D_f can be dense in S_n . Then $\dim(S_n-D_f) \leq n-1$ (see [1], p. 353). Actually, the set S_n-D_f has the dimension equal to n-1. This suggests the following question:

P 390. Is it true that $\dim f(S_n) \leq n-1$ implies $n-1 \leq \dim(S_n-D_f)$ for every mapping f of the sphere S_n $(n=3,4,\ldots)$?

The proposition trivially holds for n = 1, and follows from the Hurewicz theorem for n = 2 (see [1], p. 67).

Finally, one could ask in connection with Theorem 2:

P 391. Does the inequality

to Theorem 2.

$$0 < \dim\{y : n - \dim f(S_n) \leq \dim f^{-1}(y)\}$$

hold for every non-constant mapping f of the sphere S_n (n = 3, 4, ...)? Since 0 < n yields $0 < \dim f(S_n)$ for any non-constant f, the set $\{ \}$ in P 391 is equal to $f(S_n)$ for n = 1, and to $f(S_n)$ or $\{y : 0 < \dim f^{-1}(y)\}$ for n = 2. Thus, for n = 1 or 2, we get the inequality in P 391, according

REFERENCES

- [1] C. Kuratowski, Topologie II, Warszawa 1961.
- [2] A. Lelek, On compactifications of some subsets of Euclidean spaces, Colloquium Mathematicum 9 (1962), p. 79-83.
 - [3] G. T. Whyburn, Analytic Topology, New York 1942.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 8, 11, 1961

6

VOL. X

COLLOQUIUM MATHEMATICUM

1963

FASC, 1

ON THE LP-SPACE OF A LOCALLY COMPACT GROUP

BY

M. RAJAGOPALAN (NEW HAVEN, CONN.)

In the paper [5] Zelazko has shown that if G is a locally compact Abelian group which is Hausdorff, then $L^p(G)$ for p>1 is an algebra under convolution if and only if G is compact. In this paper I extend this result to the case when G is discrete but not Abelian and $p\geqslant 2$. In the commutative case a new proof is given for the fact that $L^2(G)$ is an algebra under convolution if and only if G is compact, based on only measure theoretic considerations and Fourier transform. Theorem 1 is of its own interest and the author has not seen any published statement of it so far. I wish to express my thanks to Professor Ionescu Tulcea who drew my attention to the paper [5].

Measure theoretic notions are generally taken from [1]. Group theoretic notions are as found in either [2] or [3].

If (X, \mathcal{E}, μ) is a measure space we write $L^p(X)$ or $L^p(\mu)$ for the space of complex valued functions f(x) on X such that $\int_x |f(x)|^p d\mu(x) < \infty$, where $p \geqslant 1$ and $\neq \infty$. Similarly, $L^\infty(X)$ or $L^\infty(\mu)$ will denote the space of all essentially bounded measurable functions on X. If $f(x) \in L^p(X)$, then $||f||_p$ will denote the usual norm in $L^p(X)$ for $p \geqslant 1$. If G is a group with a left Haar measure μ , then f * g will denote the convolution product $\int_G f(y^{-1}x)g(y)d\mu(y)$ provided f(x) and g(x) are measurable and the integral exists for almost all $x \in G$.

Let (X, \mathcal{L}, μ) be a measure space. A set $S \in \mathcal{L}$ is called an atom if $\mu(S) \neq 0$ and if for every $E \in \mathcal{L}$ and $C \cap S$ we have either $\mu(S) = \mu(E)$ or $\mu(E) = 0$. X or μ is said to be purely atomic if every set of non-zero σ -finite measure can be expressed as the union of atoms. Two sets $E, F \in \mathcal{L}$ are called equivalent if $\mu(E - F) = \mu(F - E) = 0$.

Hereafter we consider a fixed measure space (X, Σ, μ) until theorem 1. Now we state the following lemma without proof:

LEMMA 1. If every set of non-zero measure contains an atom, then μ is purely atomic.

Colloquium Mathematicum X.

LEMMA 2. If there exists a sequence $E_1 \supset E_2 \supset \ldots$ of sets $\epsilon \varSigma$ and of non-zero measure such that $\lim_{n\to\infty} \mu(E_n) = 0$, then $L^1(X) \notin L^p(X)$ for any p > 1. Similarly, if there exists a sequence $E_1 \subset E_2 \subset \ldots$ of sets $\epsilon \varSigma$ and of finite measure such that $\lim_{n\to\infty} \mu(E_n) = \infty$, then $L^1(X) \ni L^p(X)$ for any p > 1.

Proof. Without loss of generality we can assume in the first case that $0 < \mu(E_n) \leqslant (\frac{1}{2})^n$ and $\mu(E_n) \neq \mu(E_{n-1})$ for $n=2,3,\ldots$ Then define f(x)=0 outside E_2 and $f(x)=(1/n^2)\mu(E_n-E_{n+1})$ in E_n-E_{n+1} for all $n=2,3,\ldots$ Then f(x) belongs to L^1 but not to L^p for any p>1. Similarly we can prove the other result.

THEOREM 1. (i) For any p > 1 we have $L^1(X) \subset L^p(X)$ if and only if the measure is atomic, and the set of measures of all atoms has a strictly positive lower bound whenever this set is not empty.

(ii) For any p>1 we have $L^1(X)\supset L^p(X)$ if and only if every set E of σ -finite measure has finite measure and the set of measures of all sets of finite measure is bounded above.

Proof. (i) Let $L^1(X) \subset L^p(X)$ for some p > 1. Let E be any set belonging to E and of non-zero measure, if one such exists. Then either E is an atom or there is a set $E_1 \in E$ such that $0 < \mu(E_1) \leq \frac{1}{2}\mu(E)$ and $\mu(E_1) < \infty$. Now if E_1 is not an atom, then there exists a set $E_2 \subset E_1$ such that $0 < \mu(E_2) \leq \frac{1}{2}\mu(E_1)$. Proceeding like this we get that either E contains an atom or that there is a sequence $E_1 \supset E_2 \supset \ldots$ of sets of non-zero measure such that $\lim_{n \to \infty} \mu(E_n) = 0$. But this latter possibility is ruled out by lemma 2. Hence, by lemma 1, μ is purely atomic. Hence, by lemma 2, the set of the measures of the atoms, if any, must have a strictly positive lower bound.

We can prove (ii) similarly.

THEOREM 2. Let G be a locally compact Hausdorff topological group. Let μ be its left Haar measure. Then $L^1(G) \subset L^p(G)$ for some p > 1 if and only if G is discrete.

Proof. Since G is Hausdorff and locally compact we see that given an open set U containing more than one point we can find an open set V such that \overline{V} is compact and $\overline{V} \subset U$ and $\overline{V} \neq U$. From this and lemma 2 we get that if G is not discrete, then $L^1(G) \neq L^p(G)$ for any p > 1. The converse is obvious.

As a simple consequence of Theorem 2 we obtain a case of Zelazko's theorem:

COROLLARY. If G is a locally compact Abelian Hausdorff topological group with Haar measure μ , then $L^2(G)$ is an algebra under convolution if and only if G is compact.

Proof. If G is compact then clearly $L^2(G)$ is an algebra under convolution. Now let us assume that G is not compact. Let \hat{G} be the character group of G with its Haar measure. Then G is not discrete, whence, by theorem 2, $L^1(\hat{G}) \in L^2(\hat{G})$. Hence there is a function $f(\chi)$ in $L^1(\hat{G})$ and not in $L^2(\hat{G})$. Let $\varphi(x)$ be the inverse Fourier transform of $V|f(\chi)|$. Then $\varphi(x) \in L^2(G)$ since $V|f(\chi)| \in L^2(\hat{G})$. But $\varphi * \varphi \notin L^2(G)$ for if it did then its Fourier transform which is $|f(\chi)|$ should belong to $L^2(\hat{G})$ which is not the case. Hence $L^2(G)$ is not an algebra under convolution.

THEOREM 3. Let G be a discrete group. Let μ be its Haar measure. Then $L^p(G)$ is an algebra under convolution for $p \ge 2$ if and only if G is finite.

Proof. If G is finite, then clearly $L^p(G)$ is closed under convolution for all $p\geqslant 1$. Now let $L^p(G)$ $(p\geqslant 2)$ be closed under convolution. By simple reasoning we infer that the convolution is a continuous operation. The function $e_0(x)$ which is equal to one at the identity of G and zero elsewhere is an identity of $L^p(G)$. Thus the operator norm $|||f|||_p = \sup_{\|G\|_p = 1} \|f * g\|_p$ is equivalent to the norm $\|f\|_p$ and, consequently,

$$||f||_p \leqslant |||f|||_p \leqslant C ||f||_p$$

for a constant C. Hence we get the inequality

$$||f_1 * f_2||_p \leqslant ||f_1 * f_2||_p \leqslant ||f_1||_p ||f_2||_p \leqslant C^2 ||f_1||_p ||f_2||_p$$

which shows that by replacing the Haar measure μ by $C^2\mu$ we can make $L^p(G)$ a Banach algebra. In the sequel we shall assume that the Haar measure μ is so chosen that $||f||_p$ is submultiplicative.

First consider the algebra $L^2(G)$. Defining $\tilde{f}(x) = \overline{f(x^{-1})}$, $L^2(G)$ is made an H^* -algebra with unit element [2]. Hence from [4] we infer that $L^2(G)$ is finite dimensional. Therefore, G is finite.

Now let $f(x), g(x) \in L^p(G)$ (p > 2) and $h(x) \in L^q(G)$, where 1/p + 1/q = 1. Then $\int f(x)g(y^{-1}x) d\mu(x) \in L^p(G)$ and

$$\|\int_{\mathbf{G}} f(x) g(y^{-1}x) d\mu(x)\|_{p} \leqslant \|f\|_{p} \|g\|_{p}.$$

Hence the integral

$$\int_{\mathcal{G}} h(y) d\mu(y) \left[\int_{\mathcal{G}} f(x) g(y^{-1}x) d\mu(x) \right]$$

exists and

$$\left| \int_{G} f(x) d\mu(x) \left(\int_{G} g(y^{-1}x) h(y) d\mu(y) \right) \right| \leq ||b||_{p} ||g||_{p} ||h||_{g},$$

From this we get that, if $f(x) \in L^p(G)$ and $h(x) \in L^q(G)$, then $f * h \in L^q(G)$. In particular, taking the function $e_0(x)$ above for h(x) and f(x) to be any function in $L^p(G)$ we get $f(x) = f * e_0 \in L^q(G)$, whence $L^p(G) \subset L^q(G)$.

icm®

VOL. X

COLLOQUIUM MATHEMATICUM

1963

FASC, 1

But p>2, and consequently q<2< p. Hence $L^q(G)\subset L^p(G)$, and consequently $L^p(G)=L^2(G)=L^q(G)$. Therefore $L^2(G)$ is an algebra under convolution.

Hence G is finite.

Note. The author has proved after submitting this paper that for any locally compact group G the space $L^p(G)$ is closed for convolution for some p>2 if G is compact.

REFERENCES

[1] P. Halmos, Measure theory, New York 1959.

[2] L. H. Loomis, Abstract harmonic analysis, New York 1953.

[3] L. Pontrjagin, Topological groups, Princeton 1939.

[4] M. Rajagopalan, Classification of algebras, Journal of Indian Mathematical Society (N. S.) 22 (1958), p. 109-116.

[5] W. Zelazko, On the algebras L^p of a locally compact group, Colloquium Mathematicum 8 (1961), p. 115-120.

Reçu par la Rédaction le 24.11.1961

A NOTE ON L_n-ALGEBRAS

BY

W. ŻELAZKO (WARSAW)

In [3] it was shown that if G is a locally compact Abelian group, then $L_p(G)$ for p>1 is a Banach algebra under convolution if and only if G is compact. Further, Rajagopalan [2] extended this result to the case when G is discrete but not Abelian and $p\geqslant 2$. In this paper we prove this result for an arbitrary locally compact group under the assumption that p>2.

Let G be a locally compact group. Its elements will be denoted by $t,\tau;$ group operation will be written multiplicatively. Unit element will be de noted by e. If A, B are subsets of G, then AB is a set of all elements of G written in the form $t \cdot \tau$, where $t \in A$, $\tau \in B$, and A^{-1} is defined as the set of all t^{-1} , such that $t \in A$. U, V will stand for compact neighbourhoods of the unit e. It is known that for every neighbourhood U, there exists a symmetric neighbourhood $V \subset U$ (i. e. such that $V = V^{-1}$) for which $V^2 \subset U$. μ will denote the left invariant Haar measure on G. We recall that if A is open and B compact, then $\mu(A) > 0$, and $\mu(B) < \infty$. Generally speaking the left invariant measure is not the right invariant one, but there exists such a continuous function $\Delta(t)$, called modular function, that $\mu(At) = \mu(A) \Delta(t)$ for every measurable A, and $t \in G$. We have $\Delta(t) > 0$ for every $t \in G$, $\Delta(e) = 1$, and

(1)
$$\Delta(t\tau) = \Delta(t)\Delta(\tau).$$

In the case when $\Delta(t) \equiv 1$ the group G is called *unimodular*. In this case we have

(2)
$$\int f(t\tau)\mu(d\tau) = \int f(\tau t)\mu(d\tau) = \int f(\tau^{-1})\mu(d\tau) = \int f(\tau)\mu(d\tau)$$

for every integrable function f defined on G and $t \in G$. $L_p(G)$ will denote the space of all complex functions (or more exactly of equivalence classes) such that

$$||x||_p = \left(\int |x(t)|^p \mu(dt)\right)^{1/p} < \infty.$$