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MAPPINGS OF INVERSE LIMITS
BY

J. MIODUSZEWSKI (WROCLAW)

The purpose of this note is to give necessary and sufficient conditions
for a compact metric space be a continuous image of another one expres-
sed in terms of inverse expansions in polyhedra. Also conditions for
homeomorphism are given. These are analogous to the conditions given
by Alexandroff [1] and Svedov [5] for another kind of inverse expan-
sions. The results of this note have applications in [4].

1. Preliminaries. We congider inverse limits in the sense of [2].
Let X = lim{X,, =, M}, where n,meM, M is a directed set, =y : X,

- X,, m>=n, are continuous mappings (*) and X, are polyhedra. We
denote by m, projections from X into X,. Let ¥ =lUm{Y,, oy, N} be

another such a limit. Let f: X — Y be a mapping. We shall use the following
approximation lemma of [2] (Theorem X. 11.9 with Lemmas X. 3.7 and
X. 3.8) which may be expressed, for the case considered here, as follows:

LEMMA 1. For every neN and ¢ > 0 there exists moe M such that for
every m =m, there exists a mapping fun: Xpm—> Y, such that the diagram

X<~ X
1) ¥ \
) Y, <Y

is e-commutative, i. e. the distance between fi,mn(2) and o, f(z) is less than
¢ for every xeX.

2. Mappings of compact metric spaces. We consider now inverse
systems of polyhedra {X,, 7y}, where =, are onto and m, n are positive
integers. Aeccording to Freudenthal [3], every compact metrie space is
an inverse limit of such a system.

THEOREM 1. If a space Y =lEn{Yn, o} 18 @ continuous image of

(1) Throughout this note all mappings are assumed to be continuous.
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o space X = Um{X,, =}, then for every sequence {ey}, where &, >0 and
lime, = 0, there em’sté an infinite diagram

L ka «~ X,
ka/ fk+1

< Yy, < Yoy < o0

-
'Xﬂlll <~ A?ﬂz <.

(2) Ll fd
Yo, < Yoy < -t

gy

where {my} and {n} are non-deoreasing and unbounded sequonces of positive
integers, and every subdiagram of the form

-X'lnk e lmr

(3)
Yy« Yy < ¥y,

is g-commutative for oll © <k and v =k

Proof. Let ¥ = f(X). We define the required diagram by induetion.
Let n,=1. According to Lemma 1, we choose m; and f;: Xy —~ ¥
such that diagram (1) is s,-commutative for m = my, # = n; and fu = fi.

Suppose that my, 7, and f, are already defined for & < j and thab
they have the following properties:

1° subdiagrams (3) lying in the already constructed part of (2) are
g-commutative,

2° diagrams (1) for n == nyg, m = my and fun, = fi are g-commu-
‘tative.

Let m;,, > n;. Note first that there exists 1, > 0. such that »-com-
mutativity of the diagram (1) for n < 7y, % = n;,, and m > m; implies
er-commutativity of diagrams (3) with m, = my, %, = 0y, and kb < j.
Choose 7 < min (y, &,;) and then choose m;,, = m; and fi .0 Xw,, , ~>
— Y, , such that the diagram (1) be 4-commutative forn =n;, .y, m = my;
and f,,m = f;,1. It easy to verify that the properties 1° and 2° hold for
k<j+1.

Remark. If Y is of dimension 0, then diagrams of Theorem 1 may
be taken simply commutative. It would be interesting to known whether
it is possible to obtain the commutativity in Theorem 1 for the dimension
of Y greater than 0 (P 389).

A special ease of the following theorem is known from [2] (Theorem.
VIIL.3.18). It gives & sufficient condition for a compact metric space
be a continuous image of another one. We shall write f 5= ¢ if the distance
between f(x) and g(x) is less than & for all .

THEOREM 2. Let {&,}, n = 1,2, ..., be a sequence of positive numbers
such that lime, = 0. The existence of an infinite diagram (2) having, with
respect to this sequence, the properties required in Theorem 1 induces the
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existence of continuous mapping f: X — Y such that "?kfk”mkr asf for
every 8 and k, 8 < ng, and which is onto if f are onto.

Proof. We define f as & mapping which sends # = (x,, 2, ..
Y= (yu Yay -+-); Where ¥, :l}imo'?kfk(wmk)7 s=1,2,...

because for r

.) onto
The limit exists

> k we have 3% fk"mk:"k 05" fr 7, Becording to e;-commuta-
tivity of diagram (3). The point y defined in this way belongs to ¥, as

() = o} [Hm of* £ (#,n,)] = lim ol o7 (@,0,)
k—o0 k—o0

=’;l_i£:-°'?kfk(mmk) =Y, 1=1,2,

The ¢g-equalities required by the Theorem are valid aecording to
the definition of f.

In order to prove the continuity of f, it is sufficient to prove the con-
tinuity of o,f for every s =1,2,... Let ¢ > 0 and s be given. Choose %
such that o}* fkn,,Lk = o, f. Let " and 2"¢X be such that the distance
between og*fr (47,,) and o3%fi( ;’lk) is not greather than e. Then the distance
between o,f(2') and o.f(2") is not greather than 3. The continuity is

proved.
Now assume that f; are onto. Let ¥ = (¥4, ¥, ...) ¢ Y. As f; are onto,
then (a3%f,am,) " (ys) are non-empty sets for every s and k, s < n,. We

denote by A, the topological limit superior of these sets if k — co. It is
easy to verify that if weA,, then f(x) = y.. Note that 4,C 4, for ¢ >s.

Let then xe (M) 4;. Then o,f(z) = y; for every s, i.e. f(z) =y.
8=1

More convenient for applications is the following weaker form of
the above Theorem. Let # be a class of mappings.

THEOREM 2'. If for every pair of positive imiegers m and m, for every
mapping fun: Xm — X, belonging to F, and for every ¢ >0 and n' >n
there exist m’ >m and a mapping fom: Xy — Y, belonging to F such that
the diagram

X< X
(4) ¥ ¢
Y, <Y,

s e-commutative, then there ewists a mapping f: X — Y which is onto if
all mappings in F are onto.

The proof reduces to the verification that the hypotheses of Theorem 2’
implies the hypotheses of Theorem 2, i. e. to the eonstruction of diagram
(2). This construction is made by induction WhlGh is standard and the-
refore will be omitted.
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3. Homeomorphism of compact metric spaces. We prove now

TarorREM 3. If X = lUm{X,, )} and Y =1lm{Y,, o'} are ho-
meomorphic, then for every sequence {,} such that &, >0 and lime, = 0,
there exists an infinite diagram

Xm] e Xm2 R szk 1 <~ *X‘mzk <~
(8) ¥ 1
R —
Yo, < Yy oo Yy Ty <=0y

where {m;} and {ny} are unbounded and non-decreasing sequences of positive
integers, and every subdiagram of the form

X, <~ X

. - -
Myg—1 Mgy lm,,- < A-m% e )‘wnz,. 1
(3 v ) (5" 1 v
Yo, < Y"zk ) Yo, Y“‘Nﬂ A Y"zr 1
X, i X7”2k <~ sz,. szk.,_l = X'mz,., i
(5//’) T ? (5///’)
-
Yo < Ty, Yo, < Yoy y < Yoy,

8 gp-commutative in the cases (8'') and (B'"') and ey -commutative in the
cases (5') and (5'"").

Proof. Let Y = f(X) and X = ¢y(Y), where fg and gf are identities.
We construet the required diagram by induution Let n, = 1. Accord-
ing to Lemma 1, we e¢hoose m, and f;: X Uy ~> ¥y, such that diagram (1)
i§ g-commutative for m = m,, w = n, and f,, = fi. Suppose that my,,
Moy Mog_1y Mop—1, fr and gz are already defined for indices 2k— 1 and 2k
not greather than j = 2p—1 (the case j = 2p is symmetric to this one)
and that they have the following properties:

1° subdiagrams (5')-(5"") lying in the already econstructed part of
(5) are ey-commutative and ey,_;-commutative respectively,

2° diagrams (1) for fy, = fi are ey_,-commutative and similar dia-
grams for g, and g are sy-commutative.

Let Mgy, = my,_;. Note that there exist , > 0 such that y-commuta-
tivity of the diagram of type (1) for 5 <7,, for mapping ¢ ingtead of f
and for mapping g, g instead of Smny Where n. 2 ny, _;, implies the gy-com-
mutativity and e, -commutativity of diagrams (5') and (5'"') for ng, = n,
Mo = My, and all k such that 2% and 2k — 1 is not greater than j == 2]) —1.
We choose % < min (n,, &,) and then we choose Nog 25 Ty AN gyt . 7,2” o

—> Xy, such that the diagram of the tiype (1) for ¢ and g, is 5-commuta-
tive. It is easy to verify that the properties 1° and 2° hold for 2k and 2% — 1.
not greather than 2p.

Remark. As in the case of Theorem 1, diagram (4) may be taken
simply eommutative if X and Y are of dimension 0.

MAPPINGS OF INVERSE LIMITS 43

THEOREM 4. Let {e,}, n = 1,2, ..., be a sequence of positive numbers
such that lime, = 0. The existence of an infinite diagram (4) having, with
respect to this sequence, the properties requived in Theorem 3 induces the
existence of a homeomorphism f of X onto Y (the inverse of f is denoted by g)
such that og*~1f;ct,, 1!k:]asf and Ekgktfn,,k;-"lsg for every s and
kys < gy, tn the first case, and s < myy n the second one.

Proof. According to Theorem 2, diagram (4) induces the existence
of mappings f: X — Y and g: ¥ — X. It remains to show that fg and gf
are identities. We shall verify only the first inequality. According to the
definition of f and g (see the proof of Theorem 2) we have

osfg(y) = hm U"“k i [hm”;:;:z_l gr (;7/:12r)]

] : Nop. m.
= lim im o1 fpmn2r 9. (Yn,,)

k—o0 r—00

= lm o (g, ),
soo
where 1/,1% W /w le & -commutativity of diagram (5'). By commu-
tativity (6'), we have also gy2k—1 (ynzk D= Ys- Hence, we have hma;'ﬂv L(4n)

EA‘)]
= Y. Thus, o.fg(y) = y for every s, i.e. fg is the 1denb1ty.

The more convenient for applications is the following weaker form.
of the above Theorem. Let # and ¢ be classes of mappings.

THEOREM 4'. If for every pair of positive integers m and n, for every
MAPPINYG fonn: X — Yo, belonging to F, for every ¢ >0 and m' > m, there
exists n' >n and a MaPPIng Gume: Yo — X, belonging to ¢ such that
the diagram

X< Xy
+

Y, < Y,

is e-commutative, and the same 18 true after change X into Y, F into 9 ele.,
then there exists a homeomorphism between X and Y.

The proof reduces to the verification that the hypotheses of Theo-
rem 4’ implies hypotheses of Theorem 4, i. e. to the construction of dia-
gram (4). The construction is made by induction which is standard and
therefore will be omitted.
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ON MAPPINGS THAT CHANGE DIMENSIONS OF SPHERES

BY

A. LELEK (WROCLAW)

A mapping (i.e. a continuous function) f of the space X is said to
be strongly irreducible provided that f(4) = f(X) implies 4 = X for every
closed subset A of X (see [3], p.162).

We denote by D; the set of all points of X on which fis 1-1, i.c.

Dy ={zmaeX,s = ff(a)};

the mapping f is obviously strongly irreducible if the set D; is dense in X.
It is known that the inverse is also true provided that X is a compact
metrie space (see [3], p.163).

Examples. Let us denote by 5I" the boundary of the n-dimensional
cube I™ in the n-dimensional Euclidean space E™.

There exists a strongly irreducible monotone mapping f of I" (n = 2,3, ...)
such that f(bI") is a point and &imyf(I™) = 1 (}). Hence f(I") is & dendrite
(see [1], p. 333, 336 and 333).

Indeed, let ¢ be the Cantor ternary set on the segment I = {t:
0<<t <1}, and let P be an arbitrary n-dimensional parallelepiped in E",
with boundary bP and centre g. Consider a set 4, consisting of points
q-+¢(x—gq), where ¢e('— {1}, #<bP, and E" is understood to be a vector
space. Then 4 is a nowhere dense closed subset of P— P, and each com-
ponent B of (P—bP)—A is a domain in E", bounded by surfaces ¢+
+¢;(bP —q), clearly homeomorphical to bP, where ¢ =1, 2, and ¢, ¢,
are end points of a component interval of I—C. Let us cut every
domain B with compact pieces of (n— 1)-dimensional hyperplanes con-
tained in the closure of B into a finite number of parallelepipeds P’
whose diameters 6 (P’) are less than }6(P). Denote by A’ the union of 4
and of all these (n—1)-dimensional pieces, where B ranges over the coun-
table collection of all components of (P—bP)—4. So 4’ is also closed in
P—bP. Hence the collection C(P) of components of 4’ is one of continua

(}) The idea of the example is due to K. Sieklucki.


GUEST




