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REMARKS ON FINITEF REGULAR PLANES
BY

L. SZAMKOLOWICZ (WROCLAW)

In this ecommunication I shall present some remarks on the classifi-
cation of finite regular planes (see [3]) from the point of view of the no-
tion of dimension. Moreover, I shall present the constructions of some
A}-algebras (see problems P 374 and P 375 in [3]) and some observations on
the existence of non-isomorphic algebras.

Let P = (X, R,)> be a finite regular plane, i.e. X is a set consisting
of finitely many elements (points) and R is a relation of three argnments
being points of X, for which the following conditions hold:

Al If ¢ = b, then Ry(a, b, ¢).

A2. If Ry(a, b, ¢), then Ry(b, a,¢) and Rs(c, a,b).

A3. If a #0b, Ry(a,b,c) and Ry(a,b,d), then Ry(d, ¢, d).

Ad. There exist points a, b, ¢ceX such that ~ Ry(a, b, ¢).

Ab. All straight lines (*) consist of the same number of points.

Let ~Ey(a, b,c). Now I define by induction a sequence of sets
[a,b, o, [a,b,¢]y,...,[a,],cly, ... such that

1° [a, b, ¢l = {a, b, ¢},

2° wela, b, 6], if and only if there exist points, d, ec[a, b, ¢],, d # e
such that Ry(d, e, x).

It is easy to see that [a,b,e¢], Cla,b,cl, if p <gq.

The set [a, b, ¢] = E) [@, D, ¢], is called the full subset of X generated

M=l
by the points a,b,ceX (P* = ([a,b, ¢]; Ry> is evidently a subplane of
the plane P == (X, Ry)).
A plane (X, R;> will be called an essential plane if the following
condition holds:

AW. For every a,b,ceX if ~Ry(a,b,e); then [a,b,¢] =X.

() Straight line means here: set of all those weX for which R,{a, b, 2) holds
for fixed @ # b of X.
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A plane (X, R,> will be called a degenerated plane if

AW,. There emist poinis a,b,c,d,e,feX, such that ~Ry(a,b,¢),
~R;(d, e, f), [0,0,¢] =X and X\ [d,e,f] #0.

It is natural to ¢all P = (X, R,> a finite space, if it satisfies the
following condition:

AW,. For every a,b,ceX if ~Ry(a,b,ec); then X\ [a,b, ] 0.

The essential planes are A3- and A3-algebras. The Af-algebra con-
structed in [3] (see the remarks in § 4) is a degenerated plane. The A2 -al-
gebras whose construection will be presented in § 2 of this article, ave finite
spaces. )

1. It is easy to prove that the essential planes have the following
property by which their two-dimensionality is characterized.

TueorEM 1.1. Let (X, R;> be any essential plane, and R,(z,, i,
®3, ) a relation for which the following conditions hold:

Bl. If Ry(w,,®s, 2s), then Ry(2y, @y, 85, Y),

B2. If By(w1, @5, s,y 24), then Ry(,, By, e, 05) and By(ay, @y, 04, ©,),

B3. If ~RB(wy, %y, %3); Rul@y, @a,y %3,y) and Ry{wy, @y, 4, 8), then
By(2y, 24, 9,4 2).

Then for every @y, @y, %5, £, X we have B, (®,, @y, By, ®,).

The following lemmas are evident

L1. If NRa(a:b70)7 T FY, Rﬁ(ay
~ By, z,y)

L2. If ~Ry(a,b,c), a #a and Ry(a,b,n),

Now we prove by induction

L3. If ~ Ry(m, %, %3) and ze[®y, oy, #5),, then R,(wy, ©,, s, 2).

In fact, if ze[®;, @a, #,],, then z is one of the points @,, x,, u,, thus
Ry(@, #,, @5, 2) according to Al, Bl, B2. From Bl and B2 if follows
that R,(w,, ¢4, @5, 8) for ze[m,, 2y, 2,]; a8 well.

Assume now that

(%) for every aelw,, 4y, @], (k > 0) 4t is Ry(ay, @y, @4, a).

Let 2e[®y, s, 03] According to the definition there exist such
yy Gpe[@yy @y, @]y that Ry(ay, ay,2) and o, # ay, whence wo obtiain,
making use of BI,

2,y) and Ry(b,m,y), then

then ~ Ry(a, e, ®).

(i) By(®;y a1y 05,2)  for i=1,2,38,

From. (%) we obtain R,(z,, ,, 24, a;) for j
~ By(@y, #,, %;) we have, by virtue of B3,
(ii) for

B2y, %1, 0, a,) 0hj=1,2,3.

icm

=1, 2. Now, becanse of
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By virtue of Ll we may (without loss of generality) assume that

ey ~ Es(@1, a1, a5).

In view of B3 we have from (i) and (ii)

(iv) By(2y, 3, 0,2) for 1=2,3;j=1,2.

According to L2 we have R,(x,, a;,2) or ~ Bg(x,, ag, 2). For each
of these alternatives we obtain, in virtue of B3 and (iv), Ry(y, ®s, 24, 2).
This completes the proof of L3.

Proof of theorem 1.1. Suppose that there exist =,, Ly, By, 2, fOr
which ~ R,(w,, ,, #;, #,) holds. From Bl we obtain ~ Ry(wy, @y, #3)
and, from AW, w,e[x,, 4y, @;], which in view of L3 contradiets the as-
sumption. Thus B, (@, 25, 4,5, #,) for every @, x,, x4, x,.

2. In [3] I introduced the notion of A} -algebras and showed their
correspondence with Pj-planes (n = 2i-+1) for ¢ > 3.

Namely, I call an A}-algebra the ordered pair {4,0) where 4 is
a set consisting of » points and o is an operation having the following
properties:

Wl aoa = a,

W2. a0b=0boa,

W3. ao(aob) =b.

For these algebras the relation R,(a,b,c) (satisfied if and only if
a="bora=c¢orb =coraob =c) was introduced in a natural manner.

An A3}-algebra satisfying the condition

W4. If ~ Ry(a, b, ¢), then ao (boe) = (aob)oc is called a PA>S-
algebra (projective A% -algebra).

I shall prove the following

THREOREM 2.1. Given the algebra P4}, = (A, 0), let {g,, g5, ..., g} C 4
be an arbitrary minimal set of generators of this algebra. The number of
points of this algebra is an elemeni of the sequence defimed by formulae:
ty =1, Uy =2ug_,+1 (hence it is of the form 2°—1).

Proof. We shall congsider the sequence of subalgebras A%p = {(4,,0)
of the given P4} (p =1,2,...,s), each of them generated by the sub-
sequence ¢, ga, ..., g, of 1Ls generator

From W1 it follows that All has only o@a point. It is easy to see,
that the number of elements of Ay, =(4y,0) 081, =8 =2-141.

Let Aq = {4,,0) be the subalgebra, of the PA} generated by the
elements 91: Goy -y 9p- Lot Ay = {a;, ag, ..., o}, I, = k. We shall prove
that the number of elements of the suba,lgebm Azp 41 generated by
Gus G2y ooy Ppg1 18 bppy = 2541
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From W2 and W3 we have

(1) I ao b = a, then a = b,

(2) If aob =aoc then b =¢,
whence ;0 gp,1 # % © gpy1 for 4 #j. Of COUISe; (41 # oy and a; 0 g,
# Jpi1- We write y; = ;0 §pp1 = Gn1 0 G- Evidently y; # a;.

‘We shall show that A, = {&, - s % Gog1s Y1seoos Vit

Really
4O o = apedpn,
4O Gpr1 = Gpp10 i = vieduias
YiO Vi = yiedp,
Ipr19 Ip1 = gn-.LlEAp-{-l:
Y10 @ =0 Y; = O (a;0 gprgvl) = {p HEAp 1)
Yi O a; = ;0 y; = ;0 (a0 gpy 1) = (a0 ;) 0 ¢pia

=0 pi1 = VYmedpins

Vi O ¥i = ;0 95 = ;0 (20 fpi1) = (Y10 @) © Ypy1 '
= (af o )’i) Ofp1 = %0 (Y‘io [/ .)-l) = ;0 [(a;0 'm ‘,»‘I) O 1]
=0 0= Gpedy,.

This completes the proof of theorem 2.1.

We remark that for a fixed » all PAj}-algebras are isomorphic.

By constructing a sequence of algebras corresponding to t;tm sequence
given in [3] it is easy to prove that for each n > 15 there e}fxst algebras,
Dbeing not PA3-algebras such that the number of their points is an element
of the sequence u, =3,7,15,3L, ...

Any A3-algebra for which the following condition holds

W4". (aob)o(cod) = (a0 ¢)o (bod),
will be called AAS-algebra (affine AS-algebra).

I ghall prove

THROREM 2.2. If {g1, 0z, -+, §s} 48 an arbitrary minimal set of generators
of AAl-algebra, then the nwmber of elements of this algebra is n == 3" '

Proof. Analogously ag in the proof of theorem 2.1 we shall con-
sider the sequence of subalgebras A%p = (4A,, 0> of this algebra with the
same property as in 2.1.

It is easy to see, that the number of elements of A, = (A, o) i
l, =3 =23. _ )

Let Aj = (4,,0> be the subalgebra of the AAS generated. Dby
Gy Goy ey Gp- Tiet Ay = {0, 05y ..., 0.}, I = F.

icm
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We shall prove that the number of elements of the _A?p
generated by gy, gay --.; gpy1 18 Ly = 3k.

Of course g,.,¢A4,. From (2) we have ¢;0 g,,; # ;0 gy, for i #J.

We write y; = ;0 g,y = ps10 O ‘and d; = @;0 y;, = y,0 0;. Evi-
dentry y; # a; and &; # ;. Now we show that y; .

Let ;0 a; = o, whence o = ;0a,. We have

+y-algebra

0 = g0y, =

= (@;0 0) 0 (2,0 gy.1) = (@50 a;) 0 (&; 0 gp+1) = (@O a;)oy; # y;, be-
cause of (1) and y; # o = @; 0 a,.
We now prove that 4,.1 = {a;, ..., ag, 1, ..oy ¥y 61y -+, 8}, Really

400 = apedy 1 let a;0 0; = o, whenee o; = a,0 o, and let a0 a;
= ag, then

Y700 = ;0 5 = (a; 0 ;) 0 (40 gp,1) = (a0 ;) © (alo.g“l)

= 050y = Ggedy,q,
0;0a; = ;0 8 = ;0 (a;C ;) = (a; 0 o) 0 (05 0 )

= (@30 )0 (¢, 091) = 50 [a;0 (@, 0 gps1)] = oz 0 Opg1 = psedy iy,
Ve 0 ¥ = (010 gp1) 0 (670 gpi1) = gpia1 0 (0 @)

= Ops10 0 = pged

I

2412
0p0 07 = (a0 y1) 0 (s 0 ;) = (00 ) O y; = 0 Oy, = Sged
Besides, let a;0 a; = o

ES T

;0 y; = y30 6; = (4 © gp41) © (@ 0 y)
= (a0 af) o [gp-)-l o (g;u+1 o al)] =030 a4y = aqu},_H,

which completes the proof.
For any fixed n all AA}-algebras are evidently isomorphic.

3. It seems to be interesting whether there exist, for a fixed n,
different A3-algebras which are essential planes, degenerated planes, or
spaces (P 388). This problem is connected with a question raised by
Skolem in [2] about the number (for fixed 4) of the non-isomorphic
planes Pj.

Evidently all A4j-algebras are isomorphic and are essential planes.
The same can be said of 4j-algebras. All algebras constructed by the
author in this article and in [3] are not essential planes for » > 9. The
question can be raised whether there exist L,,-essential planes for m > 2.
The answer is positive as will be proved now.

Let Pf = (X, Ry>, k > 2 (i is here the order of ramification of every
point from X, and % is the number of points on every straight line) and
~ EBy(a, b, c) for a certain triple a, b, ceX.

The following lemmas are evident:

L1. The number of elements of the set [a, b, 6], is 3(k—1).

L2. If [a,b,¢), = [a,D,c], then m > 2.
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LS. The number of clements of the set [a, b, ¢l, i at least 3(k—1)-|-
+(k—2)% '

Really, each of the straight lines [a, b], [a, ¢], [b, ¢] containg exactly
% —2 points different from a, b, ¢. They are all points of the set [a, D, ?]1-
Let the points of one of these straight lines, e.g. [a, b], be the points
@, b, By, Bay ..oy Bp_s. On each of the straight lines le, #,], Eo,mzj, cee
[¢, #,_,] are placed at least t—2 points different from the points of the
set [a, b, cl;.

We now prove

TuroreM 3.1. If P¥ = (X, Ry) is o degenerated plane or space, then
the number of the points of X is at least equalto (k—1)[3(k— 1)y (b —2)%] -1
(thus 4 = 3(k— 1)+ (k—2)2).

Proof. Taking into account the condition AW; or the eondition
AW, we infor that there exists a triple a, b, ¢ X for which X' [a, b, ¢]
0. From L2 it follows that if [a,b, ¢]m = [a, b, ¢]; then m = 2. Let
zeX and @¢[a,b,cl,. Let @y, 3,, ..., % be points of the set [a, b, ¢]s.
From L3 we have I =38(k—1)+ (k—2)%. From the definition of the
sequence of the sets [a, b, ¢], it follows that the points of the straight
lines [w, «,] different from , do not belong to [a,b, ¢];. There are
at least (k—2)1 such points. The number of points of the plane Pt
is at least equal to 3(k—1)4-(k—2)2+(k—2)[3(k—1)+4 (k—2)2]-|-1 ==
= (k—1)[8(k—1)+(k—2)*]+1.

Therefore all planes PE = (X, Ry for which ¢ < 3(k—1)--(k-—2)*
are essential planes.

The Al-algebra (Pi-planes or Lj-planes)

ofl 12| 3|alsle6|7]s8|0]w|1n]iz{1s
1l 1) 8| olro|ur]uaz|us| 2] 3| 4| 5| 6| 7
T2 8| 2011213 9| 1| 7| 3| 4] 5] 6
T3l el 10| 312 |13| 8 |11] 6| L| 2| 7| 4| b
s 101112 8| 7| 6] 65|13] 1|, 2| 8| 0
sl il 8| 5] 9|10 4| 6| 7| 1| 2| %
sliz |13 8 7 9 6| &l 3| 510 |10| 1| 2
7B e ] 6|10 & 7|12 2| 5| 83| 8] 1
TSl 21 1| 6 5| 4| 3|12| 8|10 9|13 7 11
ol 3 7 1 13 6| 5| 2|10 9| 8|12 11| 4
0| 4| 3| 2| 1| 7/ 11| 5| 9| 8|10 6|18 |12
| 5| 4| 7| 2| 1|10 s{ 12| 61| 9} 8
12| 6| 5| 4| 3| 2 8| 7|1L|13| 91210
B 76| 5] 9 3 111 | ¢ (12| 8|10 |18

is an esgential plane.
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It is easy to verify that the following A¥-algebra is also an essen-
tial plane:

o1 ‘2|3 4 5‘6'7 819 10’11 12{13]14'15
1 o|10]11]12]13]14]15] 2| 3] 4| 5| 6] 7| 8
2| 9| 2|11 12|13 14|16 |20| 1| 8| 3| 2| 5] 6| 7
3|70 11| 3| 13(14|15| 8| 7 12| 1| 2| 9| &| 5| o
4|11 2|13 4|35 7| 6| 9| 8|14| 1| 2| 3|10 5
5|1z 12|15 5| 8| 9| 6| 7|11|10] 1| 2| 3| 4
6|13 |14| 16| 7| 8| 61 4, 5/10] 9|12|1L| 1| 2| 3
7|14 15| 8| 6| 9] 4| 7| 3| 5 12|18 (10|11 1| 2
8|15 (10| 7| 9| 6! 5| 3| 8| 4| 2| 1a(1s|12|11| 1
ol 2| 1|12 8| 7/10| 5| 4| 9| 6|15, 3| 14|18 |11 .
0| 3| 8| 1|1al1| 9|12 2| 6|10 5| 7|15 413
| 4| 3| 2| 1|10 12|13|14 15| 5|11 6| 7| 81 @
12| 5| 4| 9| 2| 1|11l10(13| 8 7 6|12 8|15 14
B 6| 5| 4 2 111214 15| 7| 8|13| 910
4] 7 6| 5|10 3| 2 111|135 4| 8|15, 9|14 12
| 8l 7] 6| 5| 4 2| 1|11|13| 9|14 |10 |12 15

Hence there exist at least 3 non-isomorphie A%-algebras.

The author does not think that the problem raised above as Skolem’s
question in [2] may by solved in general, because the brilliant results
of Skolem solving the problem of existence of the triple systems of Steiner
touch the limit of the possibilities of contemporary mathematics.

Certain partial results coneerning the existence and classification
of A%-algebras may by obtained by machine computation.

This situation may by compared with the results obtained in [1]
where the problem of the existence of orthogonal Latin squares was
solved. Here the problem of existence of projeetive and affine planes
in general seems to be unselvable, and partial results were obtained by
machine computation.
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