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ON BASES WITH RESPECT T0O A CLOSURE OPERATOR WITH
THE EXCHANGE PROPERTY
BY
J. PLONKA (WROCEAW)

It is known that the classical theorem on the existence of bases
in vector spaces is a partieular case of a more general proposition: if ¢
is a closure operator in X, having a finite character and the so-called
exchange property, then there exists a C-basis of X (see below 1 (iii)
and 3 (i)).

This paper contains some remarks on e¢losure operators with the
exchange property and, in particular, a theorem on the existence of a ba-
sis, in which the hypothesis of a finite character is replaced by a weaker
one (Theorem 1). I prove also a converse of this theorem for the case
of a topological space (Theorem 2).

Some modifications of my primary proofs are due to Professor
E. Marczewski.

1. Closure operators. Let us recall basic properties of closure ope-
rators and some related notions.

By closure operator in a fixed set X we mean every extensive, mo-
notone and idempotent function ¢ which associates a subset C(F) of X
with each subset F of X (cf. e. g. Birkhoff [1], p. 49, Schmidt [4] and [57).
In the sequel the letter ¢ will always denote a closure operator.

IEGCHCX and C(G) D B, we say that G C-generates E, or that
Gis a set of C-generators of B, or else, that G is C-dense in E. A set is called
findtely C-generated if it iy C-generated by a finite subset.

We say that I is C-independent, or C-isolated (Sehmidt [4], p. 38)
if I is a minimal set of generators of € (I), or, in other words, if a ¢0 (I \ {a})
for each ael. Bach C-independent set of C-generators of I is called
a C-basis of B. It is easy to see that

(i) Bach C-basis of B is a maximal C-independent subset of 1.

(ii) Bach finite set of C-generators of E contains a finite C-basis.

The converse of (i) is not generally true. Moreover bases do not
always exist,
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By definition, a closure operator €' in X has @ finite character, whe-

never for each FCX
0(B) = U C(F),
where F runs over all finite subsets of H.

Kuratowski-Zorn lemma implies the following proposition (see o.g.
Schmidt [4], p. 39).

(iil) If C has a finite characier, then every C-independent subsel of
ECX is contained in a mawimal C-independent subset of K.

The hypothesis of a finite character is essential.

2. Relativization and localization. If ( is a closure operator in .V
and if ¥ CX, then we put Cp(E) =C(E)~ Y for any HCY (cf.
Kuratowski [3], p.22). It is easy to verify that

(i) Oy is @ closure operator in Y.

(ii) If C has a finite character, so has Cy.

(iii) For subsets of Y the notions of independence, generators, and
bases, are equivalent for C and Cy-, respectively.

We say that a is a C-independent orx else C-isolated point of H, in
symbols: aeInd(F, ), whenever a¢CO(E— {a}). Obviously, a set I is
C-independent if and only if Ind(I,C) =1I. In view of (iii) we. have
Ind(E,C) = Ind{(E, Cg).

We say that the operator ¢ in X has a finite characier in a<X, in
symbols: aecFin(C), whenever for every set FC X such that aeC(F)
there exists a finite set ## C E guch that ¢ eC(F). Obviously, ¢ has a finite
character if and only if Fin(C) = X. It is easy to prove that

(iv) Ind (X, C) C Fin(C).

The following proposition is essential for the sequel:

(v) If K CFin(C), then COx has o finite character.

It is sufficient to prove that

Cx(B)C U Og(F),

where F is any subset of K and F runs over all finite subsets of . Let
us suppose aeCx(E). Hence

aeK ~ C(E)CFin(0) ~ O ().

Consequently, there exists, by definition of the set Tin(()), a finite
set ' CE C K such that a<C(F).Since a¢Cy(B) C K, wehave e} (F) ~ K
= Og(@), q.e.d.

3. Exchange property and bases. We suppose in this seetion that ¢/
is @ closure operator in X, with the exchange property (ef. e.g. Schmidt
[6]), i.e. that for any B C X, and @, beX, the relations a¢C () and
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aeC(Bo{b}) imply beC(Eo{a}). It is known that, under the above
hypothesis (see e. g. Schmidt [5], p. 236):

- (1) If the set I s C-independent and I o {a} is mon C-independent,
then aeC(I),
whence

(i) Bach maximal C-independent subset of EC X is a basis of K.

Now let us remark that obviously

(iii) If Y CX, and C is a closure operator in X having the exchange
properly, then Cy has also this property.

Next we shall prove that

(iv) Bach C-independent subset of ® = Fin(C) is a subset of a C-basis of D,

In view of 2 (iii), it iy sufficient to prove that each Cs-independent
subset of @ is a subset of a Cy-basis of @.

In view of 2 (v), the closure operator €, has a finite character, whence,
for each COp-independent subset I of @, there exists by 1 (iii) a maximal
Op-independent subset B of @, containing I. By (ii) and (iii) the set B
is'a Cg-basis of &, q.e. d.

The following theorem is an easy consequence of (iv):

TraEOREM 1. If C is a closure operator in X having the exchange pro-
perty, and the set Fin(C) generates X, then each C-independent subset I of
Fin(C) is contained in a C-basis of X.

Obviously it is sufficient to put 7 = 0 in order to obtain the existence
of a basis of X under the hypothesis of theorem 1.

Let us remark incidentally that, for closure operators in X with
the exchange property,

(v) If Y CX 4s finstely C-generated, then every subset Z C'Y is also
finitely C-generated,
whence

(vi) If X s finitely C-generated, then C has a finite character.

In order to prove (v) let us recall the following proposition proved
under the hypothesis of the exchange property (see e. g. Bleicher-Mar-
ezewski [2], p. 210, proposition (i')):

(vii) If 1 is @ findite C-independent set and @ is o set of C-generators
of 1, then (| = |I|, where | | denotes the number of elements.

Let us denote by G a finite set of generators of ¥. If I is a C-inde-
pendent subset of Y, then, by (vii), we have [I| < |G|. Consequently,
there exists a C-independent subset J of Z having the greatest number
of elements. J is hence a maximal C-independent subset of Z and, by (ii),
a C-bagis of Z. Since |J| < |G|, the set Z is finitely C-generated. The
proposition (v) is thus proved.
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4. Topological closure. A closure operator ¢ in X ig called topo-
logical whenever 1) it is additive, i.e. 0(4 v B) =C(4) v 0(B) for
any subsets 4 and B of X, 2) C({a}) = {a} for each a<X. In other words,
¢ is a topologieal elosure operator if and only if the set X with the closure
operator satisfies the well-known axioms of Kuratowski ([3], p.20).

Tt is easy to see that

(i) Bach topological closure operator has the emchange property,
and

(i) For any topological closure operator we have

Ind (X, 0) = Fin(0),

which follows from 2(iv) and from the equality C¢'(F) = I, valid for
every finite set F, whenever C is topological.

Let us prove the following lemma:

(iii) If C is a topological closure operator in X, the set G is C-dense
in X, and G\{p} is not, then p is C-isolated in X.

Since :

C(G—{p}) © {p} = C(G—{p}) © C({p}) = C(&) = X,
and
0(@—{p}) # X,

we have p¢C(G\{p}). Consequently {p} is an open set, q.e. d.

Proposition (iii) implies the following theorem, containing, in view
of (ii), the converse of Theorem 1 in the case of topological space.

THEOREM 2. If C is a topological closure operator in X and B & C-basis (*)
of X, then B is the set of all C-isolated points of X (in symbols: B = Ind (X, 0))
and B is C-dense in X.

In view of (i), Theorems 1 and 2 give the following equivalence:

If C is a topological closure operator in X, then there ewists a C-basis
B of X if and only if the set Ind (X, C) of all C-isolated points of X is C-dense
in X. We have then B = Ind(X, C).

Let us remark that Theorem 2 iy not generally true without the
hypothesis that the operator € is topological. In fact, in the firgt examploe
from the quoted paper by Bleicher and Marczewski [2] (p. 210), two
disjoint sets I and J are O-bases of X, while Fin(0Q) = 0 = ((0). Con-
sequently 1° Fin(C) does not C-generate X and 2° there exist different
C-bages of X,

(*) Not to be confused with a basis in the topological sense.
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