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SOME THEOREMS ON BOREL-MEASURABLE FUNCTIONS
BY

G. LEDERER (SHEFFIELD)

INTRODUCTION

The subject of this paper arose from a problem due to Professor
E. Marczewski (New Scottish Book, Problem 277). In solving it I noticed
that more general results are obtainable. These are contained in [2].
Further generalisations were obtained by Traczyk [3]. He generalised
my results on real functions of a real variable to the case of mappings of
separable metric spaces into separable and complete metric spaces. Inde-
pendently, I generalised my earlier results to the case of real funetions
on a general metric space. The final generalisations (combining Dr. Tra-
czyk’s results and mine) are contained in theorems I and II of this paper.
From these & new result contained in theorem IIT is obtained.

The axiom of choice is assumed throughout this work.

I wish to emphagize that it was Professor Marczewski’s problem that
gave me the original incentive. I also wish to thank him and Dr. Traezyk
for a valuable correspondence drawing my attention to Dr. Traezyk’s
work.

NOTATION AND DEFINITIONS

In what follows all functions map a general metric space X into
a separable and complete metric space Y.
“Iff” will stand for “if and only if”. The empty set will be denoted
by 9. The cardinal number of any set § will be denoted by [S].
Given any ordinal number y, a class of sets & is called a o,-ideal iff
it satisfies the following conditions:
(i) If E,c¢& and E,C E,, then H,<é.
(ii) Let T' be a set of indices such that 7] < R, and F,e6 whenever
teT. Then
U Etétg .
tel'
Clearly, a o,-ideal means a o-ideal.
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X is said to be y-separable iff y is an ordinal number for which an
everywhere dense subset 8 of X exists such that |S| <R,. Clearly,
0-separability means separability.

In what follows subsets of X will be referred to as sets.

9 will denote a o,-ideal of sets. A proposition P will be said to
“hold (2. e.)” in a set E itf those points of & at which P does not hold form
a set belonging to 9. “P holds (a. e.)” will mean that P holds (a.e.) in X,

Given any countable ordinal number «, #(a) will denote the a-addi-
tive class of Borel sets and #(a) the a-class of Borel-measurable functions
{see [1], p. 250-305).

The distance between two points y, and y, in Y will be denoted
by Y1 —usl.

In the following two definitions X, T -and the ordinal number o
(0 < e < w,;) are fixed. A funection f is said o have the property D(a) with
respect to a closed set F at a point @ in F, iff for any positive ¢ there is
a neighbourhood & of 4 and a function g in %#(a) such that |f(z)—g (@) <e
(8. e.)in G~F. The function f is said to have the property A(a), iff for any
non-empty, closed set F there is some 2 in F' such that f has the property
D(a) w.r. 6. F at a.

In the following definition X and 7' are fixed, but « is not. The fun-
ction f is said to have the property A, iff for any non-empty, closed set F
there is some @ in F and some a (0 < a < w,) such that f hag the property
D(a) w.r.t. I' at a.

Let (agy @y ..y ay, ...) be a transfinite sequence where o, is defined
iff # < i. Then A is called the length of the transfinite sequence.

STATEMENT OF THE THEOREMS

TEROREM L. Let X be any y-separable metric space, I any o,-ideal of
sets and a any fized ordinal number such that 0 << a < w,. Then, if the fun-

ction f has the property A(a), there is for any positive ¢ a member b of #(a)
such that

If(@)—h(z)] <& (a.e.).

TreEorREM ILI. Under the Iiypotkeses of Theorem 1, there is & member ¢
of #(a) such that f(z) = g(x) (a. e.).

TrEorEM IIT. Let X be any separable metric space and O any o-ideal
of sets. Then, if the function f has the property A, there is a member ¢ of

% such that f(x) = ¢(z) (a. e.).

Remarks. For any y, the class of sets O consisting of @ alone is
@ o,-ideal. Thus, if 9 consists of & alone, (a. e.) means everywhere.

It will be shown that in the statement of theorem ILI the separable
metric space X cannot be replaced by a general metric space.
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PROOF OF THE THEOREMS

‘We shall assume that X is infinite (else the theorems hold trivially).
Proof of Theorem I. Assume the hypotheses of theorem I to hold.
Let # be a base of neighbourhoods in X such that |[#] = 8,. Well or-
dering- # we obtain a transfinite sequence (R,, R,,...) of length w,.
Denote by N the set of all ordinal numbers » for which there is a function
hy, in Z#(a) such that
f(2)—h,(2)] < e (a.e.) in R,.

The set N is obviously infinite and its elements can be arranged in
an increasing transfinite sequence (n;, .y, ...) of length A. Clearly 1 < w,.
We shall prove now that X = (J R,,.
k<2

Suppose that it is not true. Put
F=X—JR,,.
k<A

Then since F is non-empty and closed, there exists by hypothesis
a point %, in F, an element R, of # containing », and a function A, in
#(a) such that
{f(l')——hm(ﬁ)l <e (a' 6.) in Rm-
Thus
Ry = U By

k<a

Hence zge (| R,,). This is absurd. We conclude that
k<a

X = UR,,.

k<i

Next put R, = 8§; and for ¥ >1
Rnk_URni = 8.
i<k

Then X = |J8;, where the elements of the union are mutually
k<

disjoint and are all differences of open sets. Thus, since a >0, Spe%(a)
for each k.

Define now the function » as follows:
h(@) = hyy(®) for @ely.

We observe that, for any %, h(z) = f(») (a.e.) in §;. Hence, since
A <o, and 9 is a o;-ideal,

h(z) = f(z) (a. e.).
It remaing to show that h(z)e#(a).

v
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Choose any open set @ of Y. Then, for any k, since h,, <% (a), h;‘kl (&
€% (a). Also, since S,e¢%(a), we have for each k:

Spnbin (@) e% (a).
= U [8enhi, (6)].
k<a

The elements of the union are mutually disjoint and belong to % (a).
Hence, by Montgomery’s theorem (see [1], p. 264-269), h~1 (@)% (a)

Since ¢ wasg arbitrary, the proof of the theorem is complete.

Proof of Theorem II. This part of the argument is due to Traczayk
[3]. It is known that (c¢f. [1], p. 294, th. 3) whenever « > 0 and he#(a),
there exists a sequence {h,} of functions such that h, -» h wniformly,
the set h,(X) is isolated in ¥, and h, ¢ #(a) for every n. (All sequences are
of length o from now on.)

Thus, by theorem 1, there is a sequence {f,} of functions, such that
for each n, f, <% (a), the set f,(X) is isolated in ¥ and

If(@)—fu(@)] <27 (a. e.).

Now b1 (G)

Hence the set

Hn,l = {w: [fn(w)‘"fn—l(w)l < 3X2~%}

belongs to ¥ (a). Using the fact that f,(X) and f,_,(X) are isolated, it
is not difficult to prove that

X—H,,¢%(a).
Now define a double sequence of functions
Ji1
2,15 2,2
93,15 ¥3,25 Js,3

as follows: g, , = f, and for n >1
fu(@)
Sr1()

Suppose that the functions Gn1y Gnpy -
a]ready defined. Let us write for m > 2

for weH,,,

@eX—H,,.

On,1 =

for

oy Gnm—y fOr mo==1,2,.. aro

H"L,m—l = {% lgn,m—l(m) gn_mm(m){ <3 ><2~n}.
We put
(@) = [gn.,m-l(m) for wel, ,\ 1,
On-1mr(®) for o X —~Hym ;.
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Since, by the above,
|gﬂ.,m(w)

for each # in X and n, m = 2, 3, ... and since the space ¥ is complete,
the sequence {g,,} converges uniformly over X.
Since, for each n, f,<%(a) and the set f,(X) is isolated in ¥, the
sets H, ,, and X —H, , belong to ¥(a) and all the functions g, to % (a).
Thus the funetion g = limg,, also belongs to %(a). Let
N—+00

_gn—l,m—ll <3x2™

= U to: fo)—fulo) > 27,

Then Z is a countable union of elements of 9. Thus, since ¥, <N,
and 9 is a o,-ideal, Z<9. If weX—Z, then [f,(®)—fu_1(2) < 3x27".
Hence weH,,; and g,:(z) = fu(®).

‘ By induction w.r. t. m, Gnm(®) = fu(@) for any @ in X—Z and for
each n and m provided m < n. Hence for any # in X—Z

g(@) = lim g, (z) = lim f,(z) =f(#).

" We conclude that
g(@) = f(z) (a. e.).

Thigs completes the proof of theorem IIL.

Proof of Theorem III. Assume the hypotheses of theorem IIX
to hold. Since X is separable it has an enumerable base #. Enumerate
Z as the sequence {R,}. Denote by I the set of all positive integers n
for which there is a function %, in B such that

If (@) —

. As in the proof of theorem I, we can prove easily that ¥ is infinite
and that | J R, = X.
neN

Next, arrange N in a sequence {n,} and consider the sequence {h,}
of funetions. For each integer r there is a countable ordinal number 7, such
that %, <% (7,). Now the sequence {7,} of countable ordinal numbers
has an upper bound « where a << w;. Hence, for any y, hy <% (a).

It is easily seen mow that f has the property 4(e). Hence, by
theorem IT, there i a function g in % (a) such that g(») = f(») (a. e.). Since
#(q) = #, theorem III follows.

(x)] < & (a.e.) in R,.

TWO COUNTER-EXAMPLES

1. If X is separable, then y = 0 and the o,-ideal I is & ¢-ideal. The
question arises whether the conclusions of theorems I and IT still hold,
if in case of a non-separable metric space X, the hypotheses of these theo-
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rems ave modified to allow T to be a o-ideal. The following example pro-
vides the negative answer.

Let X consist of points (2, y) of the closed unit square in the Bueli-
dean plane with (0, 0) as the lower left-hand vertex. Define the metric
o on X by

fwo—w| Ly =1,
e{(@s, y1)y (@2 ¥2)} 9 ity # 7

The reader can verify that X is a non-separable metric space. Let R
be the set of all points whose abscissae are rational and let f be the cha-
racteristic function of R. Further, let I be the class of all countable sets
and put o = 1. The reader can verify that the modified conditions of
theorems I and II are satisfied. Yet the conclusions of these theorems
do not hold.

2. The question arises whether the conclusion of theorem IXI holds

if the hypotheses of that theorem are modified to make X 1-geparable,

and 9 a o;-ideal. The following example shows that it does not.

Let X be the Cartesian product of the closed unit interval and the
set of all countable ordinals. Thus, the points of X are of the form (z, §)
where 0 <2 <1 and 0 < B < w,. Define the following metric ¢ on X:

[o—a| i By = B,
2 it By # B

Let Y be the real line and let 9 consist of & alone.
Now for each countable ordinal number # choose a real function
fy of Baire class # defined on [0,1]. Then, define f on X by

f(@, 8) = fola).

Since o consists of & alone, (a.e.) meang everywhere, and 9 is a
o,-ideal. The reader will verify further that X is 1-separable, that f has
the property 4 and that f is not a Borel-meagurable function on X.

o{(@y, Bu), (%s, Ba)} =
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T0 WACEAW SIERPINSKI
ON HIS 80-TH BIRTHDAY

ON SOME PROPERTIES OF HAMEL BASES
BY
P. ERDOS (BUDAPEST)

I dedicate this little note to Professor Waclaw Sierpinski since I
use in it methods which he used very successfully on so many occasions.
Throughout this paper a,f,y,... will denote ordinal numbers,
gy Ngy - .- integers, 74, ... rational numbers, 7§, ... non-negative rationals
and @, @q, b, ... real numbers. H will denote a Hamel basis of the real
numbers, H* the set of all numbers of the form >'n.a, (@.<H) (the sum

is finite) and H+ the set of all numbers of the form Jria, (a.cH):

Measure will always be the Lebesgue measure, and (a, bd) will denote
the set of numbers a < 2 < b.

Sierpinski showed [1] that there are Hamel bases of measure 0 and
algo Hamel bases which are not measurable.

We are going to prove the following theorems:

TEEoREM 1. H* is always mon-measurable. In fact H* has inner
measure 0 and for every (a,b) the outer measure of H*~(a, b) is b—a.

THEOREM 2. Assume ¢ = 8,. Then there is an H for which H+ has
measure 0.

Proof of Theorem 1. The sets H*+1/n, 2 < n < oo, are pair-
wise disjoint. Thus a simple argument shows that H* has inner measure 0.

For every x there exists an n, so that n, 2 is in H*, or the sets 1/nH*,
2 < m < oo, cover the whole interval (—oo, -}-co). Hence H* cannot have
outer measure 0, and thus by the Lebesgue density theorem it has a point,
say x,, of outer density 1. But then (since H* is an additive group) every
point of z,+H* is a point of outer density 1 of H*. Finally, it is easy to
see that H* i everywhere dense (since, if @ and b are rationally indepen-
dent, the numbers n,a-n,b are everywhere dense).

Now it is easy to deduce that the outer measure of H*~(a, b) is b—a.
To see this observe that since H* has outer density 1 at x,, for every
& >0 there exist arbitrarily small values of #, such that the outer mea-
sure of H*~(2— 7,2+ 1) is greater than 2(1—e)n; but consequently
the same holds for H*~(z,+1—7,x,+t-+7), where ¢ is an arbitrary
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