COLLOQUIUM MATHEMATICUM VOL. X 1963 FASC, 2 ## ON THE REPRESENTATION OF THE CONTINUOUS FUNCTIONS OF TWO VARIABLES BY MEANS OF ADDITION AND CONTINUOUS FUNCTIONS OF ONE VARIABLE BY ## RAOUF DOSS (CAIRO) A. N. Kolmogoroff (1) has proved the following important theorem: For every $n \ge 2$ there exists functions $\psi^{pq}(x)$ real, increasing and continuous in the interval $E^1 = [0,1]$, such that every function of n variables $f(x_1, \ldots, x_n)$ real and continuous in the cube E^n may be repre- $$f(x_1, \ldots, x_n) = \sum_{q=1}^{2n+1} \chi_q \Big[\sum_{p=1}^n \psi^{pq}(x_p) \Big],$$ where the functions $\chi_q(y)$ are real and continuous. For n=2 we get the representation sented in the form: (1) $$f(x_1, x_2) = \sum_{q=1}^{5} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)].$$ Our aim is to prove that the representation (1) above cannot be improved: THEOREM. The representation (1) of Kolmogoroff is best possible in the sense that if $\psi^{pq}(x)$, p=1,2, $q=1,\ldots,4$, are 8 fixed functions, real, increasing and continuous in E^1 , then there exists a real and continuous function of 2 variables $f(x_1, x_2)$ which cannot be put in the form (2) $$f(x_1, x_2) = \sum_{q=1}^4 \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$ where the $\chi_q(y)$ are real and continuous. ⁽¹⁾ А. Н. Колмогоров, О представлении непрерывных функций нескольких переменных в виде суперпогиций непрерывных функций одного переменного и сложения, Доклады Академии Наук СССР 114 (1957), № 5, р. 953-956. For the proof we use the following notation: $\alpha, \beta, \gamma, \delta$ being real numbers, the level curves $$\begin{split} \psi^{11}(x_1) + \psi^{21}(x_2) &= \alpha, \\ \psi^{12}(x_1) + \psi^{22}(x_2) &= \beta, \\ \psi^{13}(x_1) + \psi^{23}(x_2) &= \gamma, \\ \psi^{14}(x_1) + \psi^{24}(x_2) &= \delta \end{split}$$ will be denoted by [a], $[\beta]$, $[\gamma]$, $[\delta]$ respectively. A point common to two level curves, say [a], $[\delta]$ or $[\beta]$, $[\gamma]$, will be denoted $[a\delta]$ or $[\beta\gamma]$ respectively. Also we put $$\chi_1(\alpha) = A$$, $\chi_2(\beta) = B$, $\chi_3(\gamma) = C$, $\chi_4(\delta) = C$, and if a subscript or a superscript occurs in α , β , γ , δ it appears again in A, B, C, D, e.g. $\chi_3(\gamma_2') = C_2'$. LEMMA 1. Let $\psi^{pq}(x)$, p=1,2, q=1,2, be 4 real functions, increasing and continuous in the interval $E^1=[0,1]$. There exists a function $f(x_1,x_2)$ of 2 variables, continuous in E^2 and which cannot be written in the form (3) $$f(x_1, x_2) = \sum_{q=1}^{2} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$ where the $\chi_q(y)$ are real. Proof. Suppose we have obtained 4 distinct points of the form $$[a_1\beta_1], \quad [a_1\beta_2], \quad [a_2\beta_1], \quad [a_2\beta_2].$$ Consider a continuous function $f(\alpha_1, \alpha_2)$ equal to 1 at the points $[\alpha_1\beta_1]$, $[\alpha_2\beta_2]$ and equal to -1 at $[\alpha_1\beta_2]$, $[\alpha_2\beta_1]$. If f admitted the representation (3) we should have $$A_1+B_1=1,$$ $A_2+B_2=1,$ $A_1+B_2=-1$ $A_2+B_1=-1.$ These equations are contradictory, for by addition they give 2=-2. Hence f is not representable in the form (3). To complete the proof we have to construct the 4 distinct points mentioned above. We may suppose that two level curves $[\alpha]$, $[\beta]$ do not meet in two distinct points P_1, P_2 , for, in this case, every function of the form (3) would have the same value at P_1 and P_2 . We conclude that a level curve $[\beta]$ cannot cover a square. Hence one of the increasing functions $\psi^{12}(x_1)$, $\psi^{22}(x_2)$ is strictly increasing and therefore the coordinates of a point P of $[\beta]$ are continuous functions of a parameter t. We deduce that if $[a_1]$, $[a_2]$ meet $[\beta]$, then every level curve [a] for which a lies between a_1 and a_2 meets also $[\beta]$. In fact, t_1 , t_2 being the values of the parameter t for the points $[a_1\beta]$, $[a_2\beta]$ and putting $$\psi^{11}(x_1(t)) + \psi^{21}(x_2(t)) = \psi^1(t),$$ we have $\psi^1(t_1) = a_1$, $\psi^1(t_2) = a_2$. Hence, since ψ^1 is continuous: $\psi^1(t) = a$, for some t lying between t_1 and t_2 . This shows that [a] and $[\beta]$ intersect. Let now $[a_1]$ be any level curve. Choose 3 distinct points P_1, P_2, P_3 on $[a_1]$ and let $[\beta_1]$, $[\beta_2]$, $[\beta_3]$ be the (distinct) 3 level curves through P_1, P_2, P_3 . Let P'_1, P'_2, P'_3 be 3 points situated on $[\beta_1]$, $[\beta_2]$, $[\beta_3]$ respectively but not on $[a_1]$ and let $[a'_1]$, $[a'_2]$, $[a'_3]$ be the 3 level curves through these points. Two at least of the differences $a_1-a'_1$, $a_1-a'_2$, $a_1-a'_3$ will have the same sign, say $a_1 < a'_1$, $a_1 < a'_2$. Let a_2 be any number in the open intervals (a_1, a'_1) , (a_1, a'_2) . Since $[a_1]$, $[a'_1]$ meet $[\beta_1]$ (in P_1 and P'_1) we conclude that $[a_2]$ meets $[\beta_1]$. In the same way $[a_2]$ meets $[\beta_2]$. The 4 distinct points (4) are now constructed. LEMMA 2. Suppose that $\psi^{pq}(x)$, p=1,2, q=1,2,3, are 6 fixed functions, real, increasing and continuous in E^1 and suppose that every function of 2 variables $f(x_1, x_2)$ continuous in E^2 may be written in the form: (5) $$f(x_1, x_2) = \sum_{q=1}^{3} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$ where the $\chi_{a}(y)$ are continuous. γ being any number interior to the interval of variation of $\psi^{13}(x_1)+\psi^{23}(x_2)$ in E^2 and $\varepsilon>0$ being given denote by $\Gamma^{\varepsilon}_{\nu}$ the closed set of points (x_1,x_2) of E^2 for which $\gamma-\varepsilon\leqslant \psi^{13}(x_1)+\psi^{23}(x_2)\leqslant \varepsilon\gamma+\varepsilon$. Then to every $\Gamma^{\varepsilon}_{\nu}$ and every positive number k we can associate a continuous function $g(x_1,x_2)$ of modulus $\leqslant 1$, vanishing outside $\Gamma^{\varepsilon}_{\nu}$, and 4 numbers β , β' , β'' , β'' , such that for every continuous function $f(x_1,x_2)$ coinciding with g in $\Gamma^{\varepsilon}_{\nu}$ we have $$\chi_2(\beta)-\chi_2(\beta')-\chi_2(\beta'')+\chi_2(\beta''')\geqslant k.$$ Proof. We shall give the proof for k=8. For k=12,16,20,... the proof would be the same with one or several more steps. Let $[\gamma_1]$ be a level curve in Γ_{γ}^e . On $[\gamma_1]$ the function $\alpha_1 = \psi^{11}(x_1) + \psi^{21}(x_2)$ is constant on $[\gamma_1]$. The function $\psi^{12}(x_1) + \psi^{22}(x_2)$ may not take the same value at 2 distinct points P_1 , P_2 of $[\gamma_1]$, for, in such a case, we should have for any continuous function f of 2 variables: $f(P_1) = f(P_2)$. Thus the image of $[\gamma_1]$ by $\psi^{12}(x_1) + \psi^{22}(x_2)$ is an interval I not reduced to one point. Choose in E^2 a closed square S not meeting $[\gamma_1]$, but so small (and close to $[\gamma_1]$) that the value of $\psi^{12}(x_1) + \psi^{22}(x_2)$, for (x_1, x_2) in S, is in I. Let $f(x_1, x_2)$ be a continuous function, vanishing in $[\gamma_1]$, but arbitrary in S. We may suppose, by adding a constant to each of the 2 functions $\chi_1, \chi_2,$ that we have $\chi_1(\alpha_1) = \chi_3(\gamma_1) = 0$. We conclude that $\chi_2 = 0$ along the curve $[\gamma_1]$, i. e. that $\chi_2(\beta) = 0$ for any $\beta \in I$. In the square S we should have $f = \chi_1 + \chi_3$, which is impossible for the arbitrary function f, according to Lemma 1. This contradiction shows that $\psi^{11}(x_1) + \psi^{21}(x_2)$ is not constant on $[\gamma_1]$ and a similar argument shows that $\psi^{11}(x_1) + \psi^{21}(x_2)$ is not constant on any part of $[\gamma_1]$ situated in a square T no matter how small. In particular $[\gamma_1]$ or any other level curve cannot cover T. Thus on $[\gamma_1]$ the function $\psi^{11}(x_1) + \psi^{21}(x_2)$ takes at least 9 distinct values, say $\alpha_1^1, \ldots, \alpha_1^9$. On each curve $[\alpha_i^i]$ choose a point P^i not situated on $[\gamma_1]$ and let $[\gamma^i]$ be the level curve through P^i . 5 at least of the differences $(\gamma_1 - \gamma^i)$ will have the same sign, say $\gamma_1 - \gamma^i > 0$ for $i = 1, \ldots, 5$. If γ_2 is any number situated in the intervals (γ_1, γ^i) , $i = 1, \ldots, 5$, we see, as in the proof of Lemma 1 that $[\gamma_2]$ meets each of the curves $[\alpha_1^i]$, $i = 1, \ldots, 5$, at some point $[\alpha_1^i \gamma_2]$ and we can chose γ_2 as close as we like to γ_1 . Let $[\beta_2^i]$, $i=1,\ldots,5$, be the 5 level curves through the points $[\alpha_1^i\gamma_2]$. We can manage to obtain 5 distinct values β_2^i . To see this we show that one cannot have e. g. $\beta_2^1=\beta_2^2$, except for one value of γ_2 . In fact suppose [hat $\beta_2^1=\beta_2^2$ and that for $\gamma_2'\neq\gamma_2$ the curves $[\beta_2^{1'}]$ and $[\beta_2^{2'}]$ through $t\alpha_1^1\gamma_2']$ and $[\alpha_1^2\gamma_2']$ coincide. The 4 points $[\alpha_1^1\gamma_2]$, $[\alpha_1^2\gamma_2]$, $[\alpha_1^1\gamma_2']$, $[\alpha_1^2\gamma_2']$ are distinct since $\alpha_1^1\neq\alpha_1^2$ and $\gamma_2\neq\gamma_2'$. If $f(\alpha_1,\alpha_2)$ is a continuous function equal to +1, -1, -1, +1 respectively at the mentioned points and if $f(\alpha_1,\alpha_2)$ admits the representation (5) we should have $$A_1^1 + B_2^1 + C_2 = 1, \quad A_1^1 + B_2^{1\prime} + C_2^{\prime} = -1, \ A_1^2 + B_2^1 + C_2 = -1, \quad A_1^2 + B_2^{1\prime} + C_1^{\prime} = 1,$$ whence the contradiction 0 = 4. Thus we can find a value γ_2 as close as we like to γ_1 , and 5 distinct level curves $[\beta_2^i]$, $i=1,\ldots,5$, meeting $[\gamma_2]$ at the points $[\alpha_1^i\gamma_2]$, $i=1,\ldots,5$. Next we can find a value γ_3 as close as we like to γ_2 and 3 distinct level curves $[a_3^i]$, $i=1,\ldots,3$, meeting $[\gamma_3]$ at the points $[\beta_2^i\gamma_3]$, $i=1,\ldots,3$. Finally we can find a value γ_4 as close as we like to γ_3 and 2 distinct level curves $[\beta_4^i]$, i=1,2, meeting $[\gamma_4]$ at the points $[a_3^i\gamma_4]$, i=1,2. Consider now the sequence of 8 points $$\begin{array}{llll} \left[\begin{array}{cccc} \alpha_1^1 & \gamma_1 \end{array} \right], & \left[\begin{array}{cccc} \alpha_1^2 & \gamma_1 \end{array} \right], \\ \left[\begin{array}{cccc} \alpha_1^1 & \beta_2^1 & \gamma_2 \end{array} \right], & \left[\begin{array}{cccc} \alpha_1^2 & \beta_2^2 & \gamma_2 \end{array} \right], \\ \left[\begin{array}{cccc} \alpha_3^1 & \beta_2^1 & \gamma_3 \end{array} \right], & \left[\begin{array}{cccc} \alpha_3^2 & \beta_2^2 & \gamma_3 \end{array} \right], \\ \left[\begin{array}{cccc} \alpha_3^1 & \beta_4^1 & \gamma_4 \end{array} \right], & \left[\begin{array}{cccc} \alpha_3^2 & \beta_4^2 & \gamma_4 \end{array} \right]. \end{array}$$ Let $[\beta_0^1]$ and $[\beta_0^2]$ be the level curves through the first two of these points and let $g(x_1, x_2)$ be a continuous function of two variables, of modulus ≤ 1 , vanishing outside I_{ν}^n , and taking the values +1, -1, -1, +1, +1, -1, -1, +1, respectively at the 8 points mentioned above. If $f(x_1, x_2)$ is any function of 2 variables, continuous in E^2 , coinciding with g in Γ_r^g , and admitting the representation (5), then $$A_1^1+B_0^1+C_1=1, \qquad A_1^2+B_0^2+C_1=-1, \ A_1^1+B_2^1+C_2=-1, \qquad A_1^2+B_2^2+C_2=1, \ A_3^1+B_2^1+C_3=1, \qquad A_3^2+B_2^2+C_3=-1, \ A_3^1+B_4^1+C_4=-1, \qquad A_3^2+B_4^2+C_4=1.$$ Whence $$B_0^1 - B_4^1 - B_0^2 + B_4^2 = 8$$ i. e. $$\chi_2(\beta_0^1) - \chi_2(\beta_4^1) - \chi_2(\beta_0^2) - \chi_2(\beta_4^2) = 8$$ Lemma 2 is now proved. LEMMA 3. If $\psi^{pq}(x)$, p=1,2, q=1,2,3, are 6 fixed functions, real, increasing and continuous in E^1 , then there exists a real continuous function of 2 variables $f(x_1,x_2)$ which cannot be written in the form (5) $$f(x_1, x_2) = \sum_{q=1}^{3} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$ where the $\chi_q(y)$ are continuous. Proof. Let $\Gamma_{n}^{e_n}$ be a sequence of closed disjoint sets of the form indicated in the statement of Lemma 2. To every n we can associate a continuous function $g_n(x_1, x_2)$ of modulus $\leq 1/n^2$, vanishing outside $\Gamma_{n}^{e_n}$ and 4 numbers β_n , β_n' , β_n'' , β_n''' such that, if $f(x_1, x_2)$ coincides with g_n in $\Gamma_{n}^{e_n}$ and if f admits the representation (5) then (6) $$\chi_2(\beta_n) - \chi_2(\beta_n') - \chi_2(\beta_n'') + \chi_2(\beta_n''') \geqslant n.$$ Put $$f(x_1, x_2) = \sum_{n=1}^{\infty} g_n(x_1, x_2).$$ Then f is continuous in E^2 . If f could be written in the form (5), relation (6) would be true for every n and the continuous function χ_2 would not be bounded. Thus f cannot be written in the form (5) with continuous $\chi_q(y)$. COROLLARY. Under the same conditions as in Lemma 3, if S is any square (closed or open) in E^2 , then there exists a function $f(x_1, x_2)$ real and continuous in E^2 which does not admit the representation (5) in S with continuous $\chi_{\sigma}(y)$. LEMMA 4. Suppose that $\psi^{pq}(x)$, p=1,2,q=1,2,3,4, are 8 fixed functions real, increasing and continuous in E^1 , and suppose that every function of 2 variables $f(x_1, x_2)$, continuous in E^2 may be written in the form (2) $$f(x_1, x_2) = \sum_{q=1}^4 \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$ where the $\chi_q(y)$ are continuous. To every open square S_0 in E^2 we can associate an open square $S_1 \subset S_0$ such that if $P_1 = [a_1 \delta_1]$, $P_2 = [a_2 \delta_2]$ are any two points in S_1 , then there are two points Q_1 , Q_2 in S_0 of the form $Q_1 = [a_2 \delta_1]$, $Q_2 = [a_1 \delta_2]$. Proof. It is impossible that for every point $P = [a\delta]$ of S_0 the two curves [a] and $[\delta]$ coincide in S_0 . For, in such a case, we should have for some function $\varphi(y)$: (7) $$\psi^{14}(x_1) + \psi^{24}(x_2) = \varphi \left[\psi^{11}(x_1) + \psi^{21}(x_1) \right],$$ for every (x_1, x_2) in S_0 . We see immediately that φ is continuous. But then, relations (2) and (7) show that an arbitrary continuous function of 2 variables would be representable in S_0 as sum of 3 functions χ_q . This is impossible by the Corollary to Lemma 3 and our assertion is proved. Also, by the same Corollary, no level curve may cover a square, so that we conclude, as in the proof of Lemma 1, that the coordinates of a level curve are continuous functions of a parameter t. Thus there exists a level curve $[a_1']$ such that along this curve and inside S_0 the function $\delta = \psi^{14}(x_1) + \psi^{24}(x_2)$ takes at least 2 values (and even 3 values). We conclude as in the proof of Lemma 1 that there are 4 distinct points $$P_1' = [a_1' \, \delta_1'], \quad P_2' = [a_2' \, \delta_2'], \quad Q_1' = [a_2' \, \delta_1'], \quad Q_2' = [a_1' \, \delta_2']$$ situated in S_0 (with $a_1' \neq a_2'$, $\delta_1' \neq \delta_2'$). Observe now, since the $\psi^{pq}(x_p)$ are increasing, that every portion of a level curve limited by 2 points R_1 , R_2 is entirely contained in the vertical rectangle of E^2 whose diagonal is R_1R_2 . Suppose, to fix the ideas, that $a_1' < a_2'$, $\delta_1' < \delta_2'$. Then, for every $a \in (\alpha_1', \alpha_2')$, $\delta \in (\delta_1', \delta_2')$ there exists a point $P = [a\delta]$ situated in S_0 . In fact, since $[\alpha_1']$ and $[\alpha_2']$ meet $[\delta_1']$ in P_1' and Q_1' , then the curve $[\alpha]$ meets $[\delta_2']$ at a point R_1 situated in the vertical rectangle whose diagonal is $P_1'Q_1'$. Similarly, $[\alpha]$ meets $[\delta_2']$ at a point R_2 situated in the vertical rectangle whose diagonal is P_2' , Q_2' . We conclude that $[\delta]$ meets $[\alpha]$ at Choose now an open square $S_1\subset S_0$, containing P, and such that if $P_1=[a_1\delta_1]\epsilon S_1$, then $a_1\epsilon(a_1',a_2')$ and $\delta_1\epsilon(\delta_1',\delta_2')$. If therefore P_1 and $P_2=[a_2\delta_2]$ are two points of S_1 , then there exists two points Q_1,Q_2 of the form $Q_1=[a_2\delta_1]$, $Q_2=[a_1\delta_2]$ situated in S_0 . Lemma 4 is now proved. LEMMA 5. Let $\mathfrak A$ be an open square, 2k an even integer. We can find an open square $\mathfrak A' \subset \mathfrak A$ such that if $[a_1], \ldots, [a_{2k}]$ are level curves meeting $\mathfrak A'$, for which an a with an even subscript differs from an a with an odd subscript and if we start from a point $[a_1\gamma_0]$ in $\mathfrak A'$, then the " $\beta\gamma$ -alternating column of length 2k for the a": [$$\alpha_1 \ \beta_1 \ \gamma_0$$] [$\alpha_2 \ \beta_1 \ \gamma_2$] [$\alpha_3 \ \beta_3 \ \gamma_2$] [$\alpha_4 \ \beta_3 \ \gamma_4$] [$\alpha_{2k} \ \beta_{2k-1} \ \gamma_{2k}$] exists and the points are in U. Proof. For simplicity we take 2k=4, so that the last point is $[a_4\beta_3\gamma_4]$. Put $\mathfrak{U}_4=\mathfrak{U}$ and let $\mathfrak{U}_3\subset\mathfrak{U}_4$ be such that if $[a_3\beta_3]$ and $[a_4\beta_4]$ are in \mathfrak{U}_3 , then a point $[a_4\beta_3]$ exists in \mathfrak{U}_4 . This comes to say that if $[a_3\beta_3\gamma_2]$ is in \mathfrak{U}_3 and if $[a_4]$ meets \mathfrak{U}_3 then $[a_4\beta_3]$ is in \mathfrak{U}_4 . Next let $\mathfrak{U}_2 \subset \mathfrak{U}_3$ be such that if $[a_2\gamma_2]$ and $[a_3\gamma_3]$ are in \mathfrak{U}_2 , then a point $[a_3\gamma_2]$ exists in \mathfrak{U}_3 . This comes to say that if $[a_2\beta_1\gamma_2]$ is in \mathfrak{U}_2 and if $[a_3]$ meets \mathfrak{U}_2 , then a point $[a_3\gamma_2]$ exists in \mathfrak{U}_3 . Finally, take $\mathfrak{U}_1 \subset \mathfrak{U}_2$ such that if $[a_1\beta_1\gamma_0]$ is in \mathfrak{U}_1 and if $[a_2]$ meets \mathfrak{U}_1 , then $[a_2\beta_1]$ exists in \mathfrak{U}_2 . Therefore, putting $\mathfrak{U}'=\mathfrak{U}_1$ and starting with a point $[a_1\beta_1\gamma_0]$ in \mathfrak{U}' , we find successively that $[a_2\beta_1\gamma_2]\epsilon\,\mathfrak{U}_2$, $[a_3\beta_3\gamma_2]\epsilon\,\mathfrak{U}_3$, $[a_4\beta_3]\epsilon\,\mathfrak{U}_4=\mathfrak{U}$. Lemma 5 is now proved. Definition. Instead of a $\beta\gamma$ -alternating column of length 2k for the α , we define what may be called a *double* $\beta\gamma$ -alternating column of length k for the δ as follows (where we suppose that all points of intersection considered do exist). We start from 2 different level curves $[\gamma_0]$, $[\gamma'_0]$ meeting $[\delta_0]$ and look for a $\delta_1 > \delta_0$ such that the 2 points $$P_1 = [\beta_1 \gamma_0 \, \delta_1], \quad P_1' = [\beta_1' \gamma_0' \, \delta_1]$$ have different β 's. Then take a $\delta_2 > \delta_1$ such that the 2 points $$P_2 = [eta_1 \gamma_2 \delta_2], \quad P_2' = [eta_1' \gamma_2' \delta_2]$$ have different γ 's. Next take a $\delta_3 > \delta_2$ such that the 2 points $$P_3 = [\beta_3 \gamma_2 \delta_3], \quad P_3' = [\beta_3' \gamma_2' \delta_3]$$ have different β 's and then $\delta_4 > \delta_3$ such that the 2 points $$P_4 = [eta_3 \gamma_4 \delta_4), \quad P_4' = [eta_3' \gamma_4' \delta_4]$$ have different γ 's, and so on. If the process stops, i. e., if, for example, for every $\delta_5 > \delta_4$, in some neighbourhood of δ_4 , the points $$P_5 = [\beta_5 \gamma_4 \delta_5], \quad P_5' = [\beta_5 \gamma_4' \delta_5]$$ have the same β 's, then take an increasing sequence $\delta_6, \ldots, \delta_k$, and put Remark 1. We see easily, by using Lemmas 4 and 5 that we can always construct a double $\beta\gamma$ -alternating column for the δ , for which all points are in a given open square \mathfrak{D} . Remark 2. If a function $f(x_1 x_2)$ admits the representation (2) and if it takes the values $+1, -1, \ldots, +1, -1$, at the points of a $\beta\gamma$ -alternating column of length 2k for the α , then $$(A_1 - A_2 + \ldots + A_{2k-1} - A_{2k}) + (D_1 - D_2 + \ldots + D_{2k-1} - D_{2k}) + C_0 - C_{2k} = 2k.$$ While if f takes the values $$f(P_1) = +1,$$ $f(P'_1) = -1,$ $f(P_2) = -1,$ $f(P'_2) = +1,$ $f(P_3) = +1,$ $f(P'_3) = -1,$ $f(P_4) = -1,$ $f(P'_4) = +1,$ at the points of a double $\beta\gamma$ -alternating column of length k for the δ , then $$(A_1-A_2+\ldots\pm A_k)-(A_1'-A_2'+\ldots\pm A_k')+$$ $+4$ terms at most in B or $C=2k$. In this case all the D's disappear. **Proof** of the Theorem. Suppose that every continuous function $f(x_1, x_2)$ admits the representation (2). Let S be an open square and k a given positive integer. We suppose, for the moment, that all points occurring in our construction exist and are in S, and that if a function is supposed to take the values +1 and -1 at 2 points, then these 2 points are different. Consider a $\beta\gamma$ -alternating column of length 2k for the α , say the column (8), and a function f taking values $+1,-1,\ldots,+1,-1$ at the points of this column. Then $$\begin{array}{ll} \{1\} & (A_1-A_2+\ldots+A_{2k-1}-A_{2k})+(D_1-D_2+\ldots+D_{2k-1}-D_{2k})+\\ & +2 \ \ {\rm terms} \ \ {\rm at \ most \ in} \ \ C=2k. \end{array}$$ Some of the δ 's in $\{1\}$ with an even subscript may be equal to some δ 's with an odd subscript. In that case an even number of D's disappear from $\{1\}$ leaving only e.g. $$\begin{aligned} \{1'\} &\quad (A_1-A_2+\ldots+A_{2k-1}-A_{2k}) + (D_{2k'+1}-D_{2k'+2}+\ldots+D_{2k-1}-D_{2k}) + \\ &\quad + 2 \text{ terms at most in } C = 2k. \end{aligned}$$ But now a δ occurring in $\{1'\}$ with an even index is different from a δ with an odd index. Consider a $\beta\gamma$ -alternating column on length 2k-2k' for these remaining δ 's and suppose that f takes the values $-1, +1, \ldots, -1, +1$ at the points of this column. Then $$\begin{split} &\{1^{\prime\prime}\} & -(D_{2k^{\prime}+1}-D_{2k^{\prime}+2}+\ldots+D_{2k-1}-D_{2k})-\\ & -(A_{2k^{\prime}+1}^{\prime}-A_{2k^{\prime}+2}^{\prime}+\ldots+A_{2k-1}^{\prime}-A_{2k}^{\prime})+2 \text{ terms at most in } C=2(k-k^{\prime}). \end{split}$$ To this we add the points of a double $\beta\gamma$ -alternating column of length k' for the δ and suppose that f takes the values $-1, +1, -1, \ldots$ and $+1, -1, +1, \ldots$ at the points of this double column; then, with a convenient notation $$\{1^{\prime\prime\prime}\}$$ $-(A_1^{\prime}-A_2^{\prime}+\ldots+A_{2k^{\prime}-1}^{\prime}-A_{2k^{\prime}}^{\prime})+$ $+4$ terms at most in B or $C=2k^{\prime}$. Then, by $\{1'\}$, $\{1''\}$, $\{1'''\}$: $$\begin{aligned} \{2\} &\quad (A_1-A_2+\ldots+A_{2k-1}-A_{2k})-(A_1^{'}-A_2^{'}+\ldots+A_{2k-1}^{'}-A_{2k}^{'})+\\ &\quad +2\cdot 6 \text{ terms at most in } B \text{ or } C=2\cdot 2k. \end{aligned}$$ There is no harm in writing "2.6 terms at most" instead of 8 terms. Now we deal with the expression $(A'_1-A'_2+\ldots+A'_{2k-1}-A'_{2k})$ as we have dealt before with $(D_1-D_2+\ldots+D_{2k-1}-D_{2k})$, getting $$(A_1 - A_2 + \ldots + A_{2k-1} - A_{2k}) + (D_1' - D_2' + \ldots + D_{2k-1}' - D_{2k}') + + 3 \cdot 6 \text{ terms at most in } B \text{ or } C = 3 \cdot 2k.$$ After 2k steps in all we obtain $$\begin{aligned} \{2k\} &\quad (A_1 - A_2 + \ldots + A_{2k-1} - A_{2k}) - (A_1^{(k)} - A_2^{(k)} + \ldots + A_{2k-1}^{(k)} - A_{2k}^{(k)}) + \\ &\quad + 2k \cdot 6 \text{ terms at most in } B \text{ or } C = 2k \cdot 2k. \end{aligned}$$ This relation will be used later. But we want first to justify our procedure. The open square S being given, choose an open square \mathfrak{D}_k whose closure is in S and let $\mathfrak{D}_k' \subset \mathfrak{D}_k$ be the square associated with \mathfrak{D}_k by Lemma 5, so that if $[\delta_1^{(k)}], \ldots, [\delta_{2k}^{(k)}]$ is a sequence of level curves meeting \mathfrak{D}_k' , for which a $\delta^{(k)}$ with an even index is different from a $\delta^{(k)}$ with an odd index and if we start from a point $[\delta_1^{(k)}\gamma_0^{(k)}]$ in \mathfrak{D}_k' , then the β_{γ} -alternating column of length 2k for the δ exists and the points are in \mathfrak{D}_k . Take any curve $[\delta]$ meeting \mathfrak{D}'_k . We can find an interval I_{δ} such that if $\delta^{(k)} \in I_{\delta}^{j}$, then $[\delta^{(k)}]$ meets \mathfrak{D}'_{k} . The curve $[\delta]$ goes outside \mathfrak{D}_{k} . Take a point on $[\delta]$ outside \mathfrak{D}_k and an open square \mathfrak{A}_k in S, whose closure does not meet \mathfrak{D}_k , such that if $[\delta^{(k)}]$ meets \mathfrak{U}_k then $\delta^{(k)} \in I_\delta$, and consequently $\lceil \delta^{(k)} \rceil$ meets \mathfrak{D}'_{k} . Then let \mathfrak{U}'_{k} be the open square associated to \mathfrak{U}_{k} by Lemma 5. Now we operate with \mathfrak{U}_k as we operated with \mathfrak{D}_k . We define an open square \mathfrak{D}_{k-1} in S, whose closure does not meet $\mathfrak{U}_k \cup \mathfrak{D}_k$, and its associated square \mathfrak{D}'_{k-1} . Next we define an open square \mathfrak{U}_{k-1} in S, whose closure does not meet $\mathfrak{U}_k \cap \mathfrak{D}_k$ and its associated square \mathfrak{U}'_{k-1} . The process can be continued until we reach an open square \mathfrak{A}_1 in S, not meeting $\mathfrak{D}_1 \cup \mathfrak{A}_2 \cup \mathfrak{D}_2 \cup \ldots \cup \mathfrak{A}_k \cup \mathfrak{D}_k$, and its associated square \mathfrak{A}'_1 . Now we start with a β_{γ} -alternating column of length 2k for the α say the column (8), for which the level curves $[a_1], \ldots, [a_{2k}]$ meet \mathfrak{U}_1' and for which the a's with an even index are different from the a's with an odd index. We start from a point $[a_1\gamma_0]$ in \mathfrak{A}'_1 . Then all the points of the $\beta\gamma$ -alternating column are in \mathfrak{A}_1 . The conditions imposed on fin U₁ can be realized. Next the δ 's occurring in column (8) are such that their level curves meet \mathfrak{A}_1 and consequently meet \mathfrak{D}_1' . Now if we consider a $\beta\gamma$ -alternating column of length 2(k-k') for some of these δ 's, the corresponding points will be in \mathfrak{D}_1 , and consequently are different from the points which occured earlier in 21, When k' > 0 we have to add a double $\beta \gamma$ -alternating column of length k' for the δ . We can always manage to have the corresponding points in \mathfrak{D}_1 , with δ 's that are different from the finite number of δ 's which already occured in our construction. Hence the conditions imposed on $f(x_1, x_2)$ in \mathfrak{D}_1 can be realized. And we can go on in this way. Thus the procedure used to obtain equation $\{2k\}$ is justified. This equation contains 4k+12k=16k terms at most on the l. h. s. while the r. h. s. is $4k^2$. Take $k = n^3$. We may state the following result. To every open square S_n we can associate a continuous function $g_n(x_1, x_2)$, equal to zero outside S_n , of modulus $\leq 1/n^2$, such that, for any continuous function $f(x_1, x_2)$ coinciding with g_n in S_n and admitting the representation (2) we have, for some values of $\alpha, \beta, \gamma, \delta$: At most $16n^3$ terms in A, B, C, $D \ge (1/n^2)4n^6 = 4n^4$ If we choose a sequence of disjoint S_n and if we put $$f(x_1, x_2) = \sum_{n=1}^{\infty} g_n(x_1, x_2),$$ then $f(x_1, x_2)$ is continuous and coincides with g_n in S_n . Denote by Man upper bound for |A|, |B|, |C|, |D|. Then $$16n^3M\geqslant 4n^4, \quad M\geqslant n/4.$$ This last relation is impossible if the $\chi_a(y)$ are to be continuous. Therefore $f(x_1, x_2)$ cannot admit the representation (2) and the theorem is proved. CAIRO UNIVERSITY EGYPT U. A. R. Recu par la Rédaction le 17.6.1962