

COLLOQUIUM MATHEMATICUM

VOL. X

1963

FASC, 2

ON THE REPRESENTATION OF THE CONTINUOUS FUNCTIONS OF TWO VARIABLES BY MEANS OF ADDITION AND CONTINUOUS FUNCTIONS OF ONE VARIABLE

BY

RAOUF DOSS (CAIRO)

A. N. Kolmogoroff (1) has proved the following important theorem: For every $n \ge 2$ there exists functions $\psi^{pq}(x)$ real, increasing and continuous in the interval $E^1 = [0,1]$, such that every function of n variables $f(x_1, \ldots, x_n)$ real and continuous in the cube E^n may be repre-

$$f(x_1, \ldots, x_n) = \sum_{q=1}^{2n+1} \chi_q \Big[\sum_{p=1}^n \psi^{pq}(x_p) \Big],$$

where the functions $\chi_q(y)$ are real and continuous.

For n=2 we get the representation

sented in the form:

(1)
$$f(x_1, x_2) = \sum_{q=1}^{5} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)].$$

Our aim is to prove that the representation (1) above cannot be improved:

THEOREM. The representation (1) of Kolmogoroff is best possible in the sense that if $\psi^{pq}(x)$, p=1,2, $q=1,\ldots,4$, are 8 fixed functions, real, increasing and continuous in E^1 , then there exists a real and continuous function of 2 variables $f(x_1, x_2)$ which cannot be put in the form

(2)
$$f(x_1, x_2) = \sum_{q=1}^4 \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$

where the $\chi_q(y)$ are real and continuous.

⁽¹⁾ А. Н. Колмогоров, О представлении непрерывных функций нескольких переменных в виде суперпогиций непрерывных функций одного переменного и сложения, Доклады Академии Наук СССР 114 (1957), № 5, р. 953-956.

For the proof we use the following notation: $\alpha, \beta, \gamma, \delta$ being real numbers, the level curves

$$\begin{split} \psi^{11}(x_1) + \psi^{21}(x_2) &= \alpha, \\ \psi^{12}(x_1) + \psi^{22}(x_2) &= \beta, \\ \psi^{13}(x_1) + \psi^{23}(x_2) &= \gamma, \\ \psi^{14}(x_1) + \psi^{24}(x_2) &= \delta \end{split}$$

will be denoted by [a], $[\beta]$, $[\gamma]$, $[\delta]$ respectively. A point common to two level curves, say [a], $[\delta]$ or $[\beta]$, $[\gamma]$, will be denoted $[a\delta]$ or $[\beta\gamma]$ respectively. Also we put

$$\chi_1(\alpha) = A$$
, $\chi_2(\beta) = B$, $\chi_3(\gamma) = C$, $\chi_4(\delta) = C$,

and if a subscript or a superscript occurs in α , β , γ , δ it appears again in A, B, C, D, e.g. $\chi_3(\gamma_2') = C_2'$.

LEMMA 1. Let $\psi^{pq}(x)$, p=1,2, q=1,2, be 4 real functions, increasing and continuous in the interval $E^1=[0,1]$. There exists a function $f(x_1,x_2)$ of 2 variables, continuous in E^2 and which cannot be written in the form

(3)
$$f(x_1, x_2) = \sum_{q=1}^{2} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$

where the $\chi_q(y)$ are real.

Proof. Suppose we have obtained 4 distinct points of the form

$$[a_1\beta_1], \quad [a_1\beta_2], \quad [a_2\beta_1], \quad [a_2\beta_2].$$

Consider a continuous function $f(\alpha_1, \alpha_2)$ equal to 1 at the points $[\alpha_1\beta_1]$, $[\alpha_2\beta_2]$ and equal to -1 at $[\alpha_1\beta_2]$, $[\alpha_2\beta_1]$. If f admitted the representation (3) we should have

$$A_1+B_1=1,$$
 $A_2+B_2=1,$ $A_1+B_2=-1$ $A_2+B_1=-1.$

These equations are contradictory, for by addition they give 2=-2. Hence f is not representable in the form (3).

To complete the proof we have to construct the 4 distinct points mentioned above.

We may suppose that two level curves $[\alpha]$, $[\beta]$ do not meet in two distinct points P_1, P_2 , for, in this case, every function of the form (3) would have the same value at P_1 and P_2 .

We conclude that a level curve $[\beta]$ cannot cover a square. Hence one of the increasing functions $\psi^{12}(x_1)$, $\psi^{22}(x_2)$ is strictly increasing and

therefore the coordinates of a point P of $[\beta]$ are continuous functions of a parameter t.

We deduce that if $[a_1]$, $[a_2]$ meet $[\beta]$, then every level curve [a] for which a lies between a_1 and a_2 meets also $[\beta]$. In fact, t_1 , t_2 being the values of the parameter t for the points $[a_1\beta]$, $[a_2\beta]$ and putting

$$\psi^{11}(x_1(t)) + \psi^{21}(x_2(t)) = \psi^1(t),$$

we have $\psi^1(t_1) = a_1$, $\psi^1(t_2) = a_2$. Hence, since ψ^1 is continuous: $\psi^1(t) = a$, for some t lying between t_1 and t_2 . This shows that [a] and $[\beta]$ intersect.

Let now $[a_1]$ be any level curve. Choose 3 distinct points P_1, P_2, P_3 on $[a_1]$ and let $[\beta_1]$, $[\beta_2]$, $[\beta_3]$ be the (distinct) 3 level curves through P_1, P_2, P_3 . Let P'_1, P'_2, P'_3 be 3 points situated on $[\beta_1]$, $[\beta_2]$, $[\beta_3]$ respectively but not on $[a_1]$ and let $[a'_1]$, $[a'_2]$, $[a'_3]$ be the 3 level curves through these points. Two at least of the differences $a_1-a'_1$, $a_1-a'_2$, $a_1-a'_3$ will have the same sign, say $a_1 < a'_1$, $a_1 < a'_2$. Let a_2 be any number in the open intervals (a_1, a'_1) , (a_1, a'_2) . Since $[a_1]$, $[a'_1]$ meet $[\beta_1]$ (in P_1 and P'_1) we conclude that $[a_2]$ meets $[\beta_1]$. In the same way $[a_2]$ meets $[\beta_2]$. The 4 distinct points (4) are now constructed.

LEMMA 2. Suppose that $\psi^{pq}(x)$, p=1,2, q=1,2,3, are 6 fixed functions, real, increasing and continuous in E^1 and suppose that every function of 2 variables $f(x_1, x_2)$ continuous in E^2 may be written in the form:

(5)
$$f(x_1, x_2) = \sum_{q=1}^{3} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$

where the $\chi_{a}(y)$ are continuous. γ being any number interior to the interval of variation of $\psi^{13}(x_1)+\psi^{23}(x_2)$ in E^2 and $\varepsilon>0$ being given denote by $\Gamma^{\varepsilon}_{\nu}$ the closed set of points (x_1,x_2) of E^2 for which $\gamma-\varepsilon\leqslant \psi^{13}(x_1)+\psi^{23}(x_2)\leqslant \varepsilon\gamma+\varepsilon$. Then to every $\Gamma^{\varepsilon}_{\nu}$ and every positive number k we can associate a continuous function $g(x_1,x_2)$ of modulus $\leqslant 1$, vanishing outside $\Gamma^{\varepsilon}_{\nu}$, and 4 numbers β , β' , β'' , β'' , such that for every continuous function $f(x_1,x_2)$ coinciding with g in $\Gamma^{\varepsilon}_{\nu}$ we have

$$\chi_2(\beta)-\chi_2(\beta')-\chi_2(\beta'')+\chi_2(\beta''')\geqslant k.$$

Proof. We shall give the proof for k=8. For k=12,16,20,... the proof would be the same with one or several more steps.

Let $[\gamma_1]$ be a level curve in Γ_{γ}^e . On $[\gamma_1]$ the function $\alpha_1 = \psi^{11}(x_1) + \psi^{21}(x_2)$ is constant on $[\gamma_1]$. The function $\psi^{12}(x_1) + \psi^{22}(x_2)$ may not take the same value at 2 distinct points P_1 , P_2 of $[\gamma_1]$, for, in such a case, we should have for any continuous function f of 2 variables: $f(P_1) = f(P_2)$. Thus the image of $[\gamma_1]$ by $\psi^{12}(x_1) + \psi^{22}(x_2)$ is an interval I not reduced to one point. Choose in E^2 a closed square S not meeting $[\gamma_1]$, but so small (and close to $[\gamma_1]$) that the value of $\psi^{12}(x_1) + \psi^{22}(x_2)$, for (x_1, x_2) in S, is in I. Let

 $f(x_1, x_2)$ be a continuous function, vanishing in $[\gamma_1]$, but arbitrary in S. We may suppose, by adding a constant to each of the 2 functions $\chi_1, \chi_2,$ that we have $\chi_1(\alpha_1) = \chi_3(\gamma_1) = 0$. We conclude that $\chi_2 = 0$ along the curve $[\gamma_1]$, i. e. that $\chi_2(\beta) = 0$ for any $\beta \in I$. In the square S we should have $f = \chi_1 + \chi_3$, which is impossible for the arbitrary function f, according to Lemma 1. This contradiction shows that $\psi^{11}(x_1) + \psi^{21}(x_2)$ is not constant on $[\gamma_1]$ and a similar argument shows that $\psi^{11}(x_1) + \psi^{21}(x_2)$ is not constant on any part of $[\gamma_1]$ situated in a square T no matter how small. In particular $[\gamma_1]$ or any other level curve cannot cover T.

Thus on $[\gamma_1]$ the function $\psi^{11}(x_1) + \psi^{21}(x_2)$ takes at least 9 distinct values, say $\alpha_1^1, \ldots, \alpha_1^9$. On each curve $[\alpha_i^i]$ choose a point P^i not situated on $[\gamma_1]$ and let $[\gamma^i]$ be the level curve through P^i . 5 at least of the differences $(\gamma_1 - \gamma^i)$ will have the same sign, say $\gamma_1 - \gamma^i > 0$ for $i = 1, \ldots, 5$. If γ_2 is any number situated in the intervals (γ_1, γ^i) , $i = 1, \ldots, 5$, we see, as in the proof of Lemma 1 that $[\gamma_2]$ meets each of the curves $[\alpha_1^i]$, $i = 1, \ldots, 5$, at some point $[\alpha_1^i \gamma_2]$ and we can chose γ_2 as close as we like to γ_1 .

Let $[\beta_2^i]$, $i=1,\ldots,5$, be the 5 level curves through the points $[\alpha_1^i\gamma_2]$. We can manage to obtain 5 distinct values β_2^i . To see this we show that one cannot have e. g. $\beta_2^1=\beta_2^2$, except for one value of γ_2 . In fact suppose [hat $\beta_2^1=\beta_2^2$ and that for $\gamma_2'\neq\gamma_2$ the curves $[\beta_2^{1'}]$ and $[\beta_2^{2'}]$ through $t\alpha_1^1\gamma_2']$ and $[\alpha_1^2\gamma_2']$ coincide. The 4 points $[\alpha_1^1\gamma_2]$, $[\alpha_1^2\gamma_2]$, $[\alpha_1^1\gamma_2']$, $[\alpha_1^2\gamma_2']$ are distinct since $\alpha_1^1\neq\alpha_1^2$ and $\gamma_2\neq\gamma_2'$. If $f(\alpha_1,\alpha_2)$ is a continuous function equal to +1, -1, -1, +1 respectively at the mentioned points and if $f(\alpha_1,\alpha_2)$ admits the representation (5) we should have

$$A_1^1 + B_2^1 + C_2 = 1, \quad A_1^1 + B_2^{1\prime} + C_2^{\prime} = -1, \ A_1^2 + B_2^1 + C_2 = -1, \quad A_1^2 + B_2^{1\prime} + C_1^{\prime} = 1,$$

whence the contradiction 0 = 4.

Thus we can find a value γ_2 as close as we like to γ_1 , and 5 distinct level curves $[\beta_2^i]$, $i=1,\ldots,5$, meeting $[\gamma_2]$ at the points $[\alpha_1^i\gamma_2]$, $i=1,\ldots,5$.

Next we can find a value γ_3 as close as we like to γ_2 and 3 distinct level curves $[a_3^i]$, $i=1,\ldots,3$, meeting $[\gamma_3]$ at the points $[\beta_2^i\gamma_3]$, $i=1,\ldots,3$.

Finally we can find a value γ_4 as close as we like to γ_3 and 2 distinct level curves $[\beta_4^i]$, i=1,2, meeting $[\gamma_4]$ at the points $[a_3^i\gamma_4]$, i=1,2. Consider now the sequence of 8 points

$$\begin{array}{llll} \left[\begin{array}{cccc} \alpha_1^1 & \gamma_1 \end{array} \right], & \left[\begin{array}{cccc} \alpha_1^2 & \gamma_1 \end{array} \right], \\ \left[\begin{array}{cccc} \alpha_1^1 & \beta_2^1 & \gamma_2 \end{array} \right], & \left[\begin{array}{cccc} \alpha_1^2 & \beta_2^2 & \gamma_2 \end{array} \right], \\ \left[\begin{array}{cccc} \alpha_3^1 & \beta_2^1 & \gamma_3 \end{array} \right], & \left[\begin{array}{cccc} \alpha_3^2 & \beta_2^2 & \gamma_3 \end{array} \right], \\ \left[\begin{array}{cccc} \alpha_3^1 & \beta_4^1 & \gamma_4 \end{array} \right], & \left[\begin{array}{cccc} \alpha_3^2 & \beta_4^2 & \gamma_4 \end{array} \right]. \end{array}$$

Let $[\beta_0^1]$ and $[\beta_0^2]$ be the level curves through the first two of these points and let $g(x_1, x_2)$ be a continuous function of two variables, of modulus ≤ 1 , vanishing outside I_{ν}^n , and taking the values +1, -1, -1, +1, +1, -1, -1, +1, respectively at the 8 points mentioned above.

If $f(x_1, x_2)$ is any function of 2 variables, continuous in E^2 , coinciding with g in Γ_r^g , and admitting the representation (5), then

$$A_1^1+B_0^1+C_1=1, \qquad A_1^2+B_0^2+C_1=-1, \ A_1^1+B_2^1+C_2=-1, \qquad A_1^2+B_2^2+C_2=1, \ A_3^1+B_2^1+C_3=1, \qquad A_3^2+B_2^2+C_3=-1, \ A_3^1+B_4^1+C_4=-1, \qquad A_3^2+B_4^2+C_4=1.$$

Whence

$$B_0^1 - B_4^1 - B_0^2 + B_4^2 = 8$$

i. e.

$$\chi_2(\beta_0^1) - \chi_2(\beta_4^1) - \chi_2(\beta_0^2) - \chi_2(\beta_4^2) = 8$$

Lemma 2 is now proved.

LEMMA 3. If $\psi^{pq}(x)$, p=1,2, q=1,2,3, are 6 fixed functions, real, increasing and continuous in E^1 , then there exists a real continuous function of 2 variables $f(x_1,x_2)$ which cannot be written in the form

(5)
$$f(x_1, x_2) = \sum_{q=1}^{3} \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$

where the $\chi_q(y)$ are continuous.

Proof. Let $\Gamma_{n}^{e_n}$ be a sequence of closed disjoint sets of the form indicated in the statement of Lemma 2. To every n we can associate a continuous function $g_n(x_1, x_2)$ of modulus $\leq 1/n^2$, vanishing outside $\Gamma_{n}^{e_n}$ and 4 numbers β_n , β_n' , β_n'' , β_n''' such that, if $f(x_1, x_2)$ coincides with g_n in $\Gamma_{n}^{e_n}$ and if f admits the representation (5) then

(6)
$$\chi_2(\beta_n) - \chi_2(\beta_n') - \chi_2(\beta_n'') + \chi_2(\beta_n''') \geqslant n.$$

Put

$$f(x_1, x_2) = \sum_{n=1}^{\infty} g_n(x_1, x_2).$$

Then f is continuous in E^2 . If f could be written in the form (5), relation (6) would be true for every n and the continuous function χ_2 would not be bounded. Thus f cannot be written in the form (5) with continuous $\chi_q(y)$.

COROLLARY. Under the same conditions as in Lemma 3, if S is any square (closed or open) in E^2 , then there exists a function $f(x_1, x_2)$ real and

continuous in E^2 which does not admit the representation (5) in S with continuous $\chi_{\sigma}(y)$.

LEMMA 4. Suppose that $\psi^{pq}(x)$, p=1,2,q=1,2,3,4, are 8 fixed functions real, increasing and continuous in E^1 , and suppose that every function of 2 variables $f(x_1, x_2)$, continuous in E^2 may be written in the form

(2)
$$f(x_1, x_2) = \sum_{q=1}^4 \chi_q [\psi^{1q}(x_1) + \psi^{2q}(x_2)],$$

where the $\chi_q(y)$ are continuous. To every open square S_0 in E^2 we can associate an open square $S_1 \subset S_0$ such that if $P_1 = [a_1 \delta_1]$, $P_2 = [a_2 \delta_2]$ are any two points in S_1 , then there are two points Q_1 , Q_2 in S_0 of the form $Q_1 = [a_2 \delta_1]$, $Q_2 = [a_1 \delta_2]$.

Proof. It is impossible that for every point $P = [a\delta]$ of S_0 the two curves [a] and $[\delta]$ coincide in S_0 . For, in such a case, we should have for some function $\varphi(y)$:

(7)
$$\psi^{14}(x_1) + \psi^{24}(x_2) = \varphi \left[\psi^{11}(x_1) + \psi^{21}(x_1) \right],$$

for every (x_1, x_2) in S_0 . We see immediately that φ is continuous. But then, relations (2) and (7) show that an arbitrary continuous function of 2 variables would be representable in S_0 as sum of 3 functions χ_q . This is impossible by the Corollary to Lemma 3 and our assertion is proved.

Also, by the same Corollary, no level curve may cover a square, so that we conclude, as in the proof of Lemma 1, that the coordinates of a level curve are continuous functions of a parameter t.

Thus there exists a level curve $[a_1']$ such that along this curve and inside S_0 the function $\delta = \psi^{14}(x_1) + \psi^{24}(x_2)$ takes at least 2 values (and even 3 values). We conclude as in the proof of Lemma 1 that there are 4 distinct points

$$P_1' = [a_1' \, \delta_1'], \quad P_2' = [a_2' \, \delta_2'], \quad Q_1' = [a_2' \, \delta_1'], \quad Q_2' = [a_1' \, \delta_2']$$

situated in S_0 (with $a_1' \neq a_2'$, $\delta_1' \neq \delta_2'$).

Observe now, since the $\psi^{pq}(x_p)$ are increasing, that every portion of a level curve limited by 2 points R_1 , R_2 is entirely contained in the vertical rectangle of E^2 whose diagonal is R_1R_2 .

Suppose, to fix the ideas, that $a_1' < a_2'$, $\delta_1' < \delta_2'$. Then, for every $a \in (\alpha_1', \alpha_2')$, $\delta \in (\delta_1', \delta_2')$ there exists a point $P = [a\delta]$ situated in S_0 . In fact, since $[\alpha_1']$ and $[\alpha_2']$ meet $[\delta_1']$ in P_1' and Q_1' , then the curve $[\alpha]$ meets $[\delta_2']$ at a point R_1 situated in the vertical rectangle whose diagonal is $P_1'Q_1'$. Similarly, $[\alpha]$ meets $[\delta_2']$ at a point R_2 situated in the vertical rectangle whose diagonal is P_2' , Q_2' . We conclude that $[\delta]$ meets $[\alpha]$ at

Choose now an open square $S_1\subset S_0$, containing P, and such that if $P_1=[a_1\delta_1]\epsilon S_1$, then $a_1\epsilon(a_1',a_2')$ and $\delta_1\epsilon(\delta_1',\delta_2')$. If therefore P_1 and $P_2=[a_2\delta_2]$ are two points of S_1 , then there exists two points Q_1,Q_2 of the form $Q_1=[a_2\delta_1]$, $Q_2=[a_1\delta_2]$ situated in S_0 . Lemma 4 is now proved.

LEMMA 5. Let $\mathfrak A$ be an open square, 2k an even integer. We can find an open square $\mathfrak A' \subset \mathfrak A$ such that if $[a_1], \ldots, [a_{2k}]$ are level curves meeting $\mathfrak A'$, for which an a with an even subscript differs from an a with an odd subscript and if we start from a point $[a_1\gamma_0]$ in $\mathfrak A'$, then the " $\beta\gamma$ -alternating column of length 2k for the a":

[
$$\alpha_1 \ \beta_1 \ \gamma_0$$
]
[$\alpha_2 \ \beta_1 \ \gamma_2$]
[$\alpha_3 \ \beta_3 \ \gamma_2$]
[$\alpha_4 \ \beta_3 \ \gamma_4$]
......
[$\alpha_{2k} \ \beta_{2k-1} \ \gamma_{2k}$]

exists and the points are in U.

Proof. For simplicity we take 2k=4, so that the last point is $[a_4\beta_3\gamma_4]$. Put $\mathfrak{U}_4=\mathfrak{U}$ and let $\mathfrak{U}_3\subset\mathfrak{U}_4$ be such that if $[a_3\beta_3]$ and $[a_4\beta_4]$ are in \mathfrak{U}_3 , then a point $[a_4\beta_3]$ exists in \mathfrak{U}_4 . This comes to say that if $[a_3\beta_3\gamma_2]$ is in \mathfrak{U}_3 and if $[a_4]$ meets \mathfrak{U}_3 then $[a_4\beta_3]$ is in \mathfrak{U}_4 .

Next let $\mathfrak{U}_2 \subset \mathfrak{U}_3$ be such that if $[a_2\gamma_2]$ and $[a_3\gamma_3]$ are in \mathfrak{U}_2 , then a point $[a_3\gamma_2]$ exists in \mathfrak{U}_3 . This comes to say that if $[a_2\beta_1\gamma_2]$ is in \mathfrak{U}_2 and if $[a_3]$ meets \mathfrak{U}_2 , then a point $[a_3\gamma_2]$ exists in \mathfrak{U}_3 .

Finally, take $\mathfrak{U}_1 \subset \mathfrak{U}_2$ such that if $[a_1\beta_1\gamma_0]$ is in \mathfrak{U}_1 and if $[a_2]$ meets \mathfrak{U}_1 , then $[a_2\beta_1]$ exists in \mathfrak{U}_2 .

Therefore, putting $\mathfrak{U}'=\mathfrak{U}_1$ and starting with a point $[a_1\beta_1\gamma_0]$ in \mathfrak{U}' , we find successively that $[a_2\beta_1\gamma_2]\epsilon\,\mathfrak{U}_2$, $[a_3\beta_3\gamma_2]\epsilon\,\mathfrak{U}_3$, $[a_4\beta_3]\epsilon\,\mathfrak{U}_4=\mathfrak{U}$. Lemma 5 is now proved.

Definition. Instead of a $\beta\gamma$ -alternating column of length 2k for the α , we define what may be called a *double* $\beta\gamma$ -alternating column of length k for the δ as follows (where we suppose that all points of intersection considered do exist).

We start from 2 different level curves $[\gamma_0]$, $[\gamma'_0]$ meeting $[\delta_0]$ and look for a $\delta_1 > \delta_0$ such that the 2 points

$$P_1 = [\beta_1 \gamma_0 \, \delta_1], \quad P_1' = [\beta_1' \gamma_0' \, \delta_1]$$

have different β 's. Then take a $\delta_2 > \delta_1$ such that the 2 points

$$P_2 = [eta_1 \gamma_2 \delta_2], \quad P_2' = [eta_1' \gamma_2' \delta_2]$$

have different γ 's. Next take a $\delta_3 > \delta_2$ such that the 2 points

$$P_3 = [\beta_3 \gamma_2 \delta_3], \quad P_3' = [\beta_3' \gamma_2' \delta_3]$$

have different β 's and then $\delta_4 > \delta_3$ such that the 2 points

$$P_4 = [eta_3 \gamma_4 \delta_4), \quad P_4' = [eta_3' \gamma_4' \delta_4]$$

have different γ 's, and so on.

If the process stops, i. e., if, for example, for every $\delta_5 > \delta_4$, in some neighbourhood of δ_4 , the points

$$P_5 = [\beta_5 \gamma_4 \delta_5], \quad P_5' = [\beta_5 \gamma_4' \delta_5]$$

have the same β 's, then take an increasing sequence $\delta_6, \ldots, \delta_k$, and put

Remark 1. We see easily, by using Lemmas 4 and 5 that we can always construct a double $\beta\gamma$ -alternating column for the δ , for which all points are in a given open square \mathfrak{D} .

Remark 2. If a function $f(x_1 x_2)$ admits the representation (2) and if it takes the values $+1, -1, \ldots, +1, -1$, at the points of a $\beta\gamma$ -alternating column of length 2k for the α , then

$$(A_1 - A_2 + \ldots + A_{2k-1} - A_{2k}) + (D_1 - D_2 + \ldots + D_{2k-1} - D_{2k}) + C_0 - C_{2k} = 2k.$$

While if f takes the values

$$f(P_1) = +1,$$
 $f(P'_1) = -1,$
 $f(P_2) = -1,$ $f(P'_2) = +1,$
 $f(P_3) = +1,$ $f(P'_3) = -1,$
 $f(P_4) = -1,$ $f(P'_4) = +1,$

at the points of a double $\beta\gamma$ -alternating column of length k for the δ , then

$$(A_1-A_2+\ldots\pm A_k)-(A_1'-A_2'+\ldots\pm A_k')+$$

 $+4$ terms at most in B or $C=2k$.

In this case all the D's disappear.

Proof of the Theorem. Suppose that every continuous function $f(x_1, x_2)$ admits the representation (2).

Let S be an open square and k a given positive integer. We suppose, for the moment, that all points occurring in our construction exist and are in S, and that if a function is supposed to take the values +1 and -1 at 2 points, then these 2 points are different.

Consider a $\beta\gamma$ -alternating column of length 2k for the α , say the column (8), and a function f taking values $+1,-1,\ldots,+1,-1$ at the points of this column. Then

$$\begin{array}{ll} \{1\} & (A_1-A_2+\ldots+A_{2k-1}-A_{2k})+(D_1-D_2+\ldots+D_{2k-1}-D_{2k})+\\ & +2 \ \ {\rm terms} \ \ {\rm at \ most \ in} \ \ C=2k. \end{array}$$

Some of the δ 's in $\{1\}$ with an even subscript may be equal to some δ 's with an odd subscript. In that case an even number of D's disappear from $\{1\}$ leaving only e.g.

$$\begin{aligned} \{1'\} &\quad (A_1-A_2+\ldots+A_{2k-1}-A_{2k}) + (D_{2k'+1}-D_{2k'+2}+\ldots+D_{2k-1}-D_{2k}) + \\ &\quad + 2 \text{ terms at most in } C = 2k. \end{aligned}$$

But now a δ occurring in $\{1'\}$ with an even index is different from a δ with an odd index.

Consider a $\beta\gamma$ -alternating column on length 2k-2k' for these remaining δ 's and suppose that f takes the values $-1, +1, \ldots, -1, +1$ at the points of this column. Then

$$\begin{split} &\{1^{\prime\prime}\} & -(D_{2k^{\prime}+1}-D_{2k^{\prime}+2}+\ldots+D_{2k-1}-D_{2k})-\\ & -(A_{2k^{\prime}+1}^{\prime}-A_{2k^{\prime}+2}^{\prime}+\ldots+A_{2k-1}^{\prime}-A_{2k}^{\prime})+2 \text{ terms at most in } C=2(k-k^{\prime}). \end{split}$$

To this we add the points of a double $\beta\gamma$ -alternating column of length k' for the δ and suppose that f takes the values $-1, +1, -1, \ldots$ and $+1, -1, +1, \ldots$ at the points of this double column; then, with a convenient notation

$$\{1^{\prime\prime\prime}\}$$
 $-(A_1^{\prime}-A_2^{\prime}+\ldots+A_{2k^{\prime}-1}^{\prime}-A_{2k^{\prime}}^{\prime})+$ $+4$ terms at most in B or $C=2k^{\prime}$.

Then, by $\{1'\}$, $\{1''\}$, $\{1'''\}$:

$$\begin{aligned} \{2\} &\quad (A_1-A_2+\ldots+A_{2k-1}-A_{2k})-(A_1^{'}-A_2^{'}+\ldots+A_{2k-1}^{'}-A_{2k}^{'})+\\ &\quad +2\cdot 6 \text{ terms at most in } B \text{ or } C=2\cdot 2k. \end{aligned}$$

There is no harm in writing "2.6 terms at most" instead of 8 terms.

Now we deal with the expression $(A'_1-A'_2+\ldots+A'_{2k-1}-A'_{2k})$ as we have dealt before with $(D_1-D_2+\ldots+D_{2k-1}-D_{2k})$, getting

$$(A_1 - A_2 + \ldots + A_{2k-1} - A_{2k}) + (D_1' - D_2' + \ldots + D_{2k-1}' - D_{2k}') + + 3 \cdot 6 \text{ terms at most in } B \text{ or } C = 3 \cdot 2k.$$

After 2k steps in all we obtain

$$\begin{aligned} \{2k\} &\quad (A_1 - A_2 + \ldots + A_{2k-1} - A_{2k}) - (A_1^{(k)} - A_2^{(k)} + \ldots + A_{2k-1}^{(k)} - A_{2k}^{(k)}) + \\ &\quad + 2k \cdot 6 \text{ terms at most in } B \text{ or } C = 2k \cdot 2k. \end{aligned}$$

This relation will be used later.

But we want first to justify our procedure.

The open square S being given, choose an open square \mathfrak{D}_k whose closure is in S and let $\mathfrak{D}_k' \subset \mathfrak{D}_k$ be the square associated with \mathfrak{D}_k by Lemma 5, so that if $[\delta_1^{(k)}], \ldots, [\delta_{2k}^{(k)}]$ is a sequence of level curves meeting \mathfrak{D}_k' , for which a $\delta^{(k)}$ with an even index is different from a $\delta^{(k)}$ with an odd index and if we start from a point $[\delta_1^{(k)}\gamma_0^{(k)}]$ in \mathfrak{D}_k' , then the β_{γ} -alternating column of length 2k for the δ exists and the points are in \mathfrak{D}_k .

Take any curve $[\delta]$ meeting \mathfrak{D}'_k . We can find an interval I_{δ} such that if $\delta^{(k)} \in I_{\delta}^{j}$, then $[\delta^{(k)}]$ meets \mathfrak{D}'_{k} . The curve $[\delta]$ goes outside \mathfrak{D}_{k} . Take a point on $[\delta]$ outside \mathfrak{D}_k and an open square \mathfrak{A}_k in S, whose closure does not meet \mathfrak{D}_k , such that if $[\delta^{(k)}]$ meets \mathfrak{U}_k then $\delta^{(k)} \in I_\delta$, and consequently $\lceil \delta^{(k)} \rceil$ meets \mathfrak{D}'_{k} . Then let \mathfrak{U}'_{k} be the open square associated to \mathfrak{U}_{k} by Lemma 5.

Now we operate with \mathfrak{U}_k as we operated with \mathfrak{D}_k . We define an open square \mathfrak{D}_{k-1} in S, whose closure does not meet $\mathfrak{U}_k \cup \mathfrak{D}_k$, and its associated square \mathfrak{D}'_{k-1} .

Next we define an open square \mathfrak{U}_{k-1} in S, whose closure does not meet $\mathfrak{U}_k \cap \mathfrak{D}_k$ and its associated square \mathfrak{U}'_{k-1} .

The process can be continued until we reach an open square \mathfrak{A}_1 in S, not meeting $\mathfrak{D}_1 \cup \mathfrak{A}_2 \cup \mathfrak{D}_2 \cup \ldots \cup \mathfrak{A}_k \cup \mathfrak{D}_k$, and its associated square \mathfrak{A}'_1 .

Now we start with a β_{γ} -alternating column of length 2k for the α say the column (8), for which the level curves $[a_1], \ldots, [a_{2k}]$ meet \mathfrak{U}_1' and for which the a's with an even index are different from the a's with an odd index. We start from a point $[a_1\gamma_0]$ in \mathfrak{A}'_1 . Then all the points of the $\beta\gamma$ -alternating column are in \mathfrak{A}_1 . The conditions imposed on fin U₁ can be realized.

Next the δ 's occurring in column (8) are such that their level curves meet \mathfrak{A}_1 and consequently meet \mathfrak{D}_1' . Now if we consider a $\beta\gamma$ -alternating column of length 2(k-k') for some of these δ 's, the corresponding points will be in \mathfrak{D}_1 , and consequently are different from the points which occured earlier in 21,

When k' > 0 we have to add a double $\beta \gamma$ -alternating column of length k' for the δ . We can always manage to have the corresponding points in \mathfrak{D}_1 , with δ 's that are different from the finite number of δ 's which already occured in our construction.

Hence the conditions imposed on $f(x_1, x_2)$ in \mathfrak{D}_1 can be realized. And we can go on in this way.

Thus the procedure used to obtain equation $\{2k\}$ is justified.

This equation contains 4k+12k=16k terms at most on the l. h. s. while the r. h. s. is $4k^2$.

Take $k = n^3$. We may state the following result.

To every open square S_n we can associate a continuous function $g_n(x_1, x_2)$, equal to zero outside S_n , of modulus $\leq 1/n^2$, such that, for any continuous function $f(x_1, x_2)$ coinciding with g_n in S_n and admitting the representation (2) we have, for some values of $\alpha, \beta, \gamma, \delta$:

At most $16n^3$ terms in A, B, C, $D \ge (1/n^2)4n^6 = 4n^4$

If we choose a sequence of disjoint S_n and if we put

$$f(x_1, x_2) = \sum_{n=1}^{\infty} g_n(x_1, x_2),$$

then $f(x_1, x_2)$ is continuous and coincides with g_n in S_n . Denote by Man upper bound for |A|, |B|, |C|, |D|. Then

$$16n^3M\geqslant 4n^4, \quad M\geqslant n/4.$$

This last relation is impossible if the $\chi_a(y)$ are to be continuous. Therefore $f(x_1, x_2)$ cannot admit the representation (2) and the theorem is proved.

CAIRO UNIVERSITY EGYPT U. A. R.

Recu par la Rédaction le 17.6.1962