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ON THE REPRESENTATION OF THE OONTINUOUS FUNCITIONS
OF TWO VARIABLES BY MEANS OF ADDITION
AND CONTINUOUS FUNCTIONS OF ONE VARIABLE
BY
RAOUF DOSS (CAIRO)

A. N. Kolmogoroff () has proved the following important theorem:

For every n =2 there exists functions " (») real, increasing and
continuous in the interval B* = [0, 1], such that every function of =
variables f(%;, ..., #;) real and continuous in the cube I may be repre-
sented in the form:

-1 n
F(@yy ooy 20) = 2 XG[Z"I’M(“’@)];
g=1

n=1
where the functions x,(y) are real and continuous.
For n =2 we get the representation

5
) Flay ) = ) 1ol (@) + 9™ (@)].

=1

Our aim is to prove that the representation (1) above cannot be
improved:

THEOREM. The representation (1) of Kolmogoroff is best possible in
the sense that if w™(®), p =1,2, ¢ =1,...,4, are 8 fized functions, real,

inereasing and continuous in B, then there exists a real and continuous fun-
ction of 2 variables f(;, %) which cannot be put in the form

4
2) Flag, @) = D 2a[v' (@) +v" ()],

where the y4(y) are real and continuous.

(1) A. H. KoaMoT0pO0B, O npedcmasaehuu HenpepuisHus ByHryull HECKOMKUL
nepemennsiz 8 aude cynepnosuyull Henpepuswuz FyHEYuLl 001020 NEPEMEHH020 U CAODICE-
nus, Moxmamst Awagemun Hayx CCGCP 114 (1957), Ne 5, p. 953-956.
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For the proof we use the following notation: a,f,y, § being real
numbers, the level curves

P (@) + 9P (@2) = 0y
P12 (@) + v* (we) = B,
P18 (@) + 9% (@) = 7,
Y (m) + oy (w) = 0
will be denoted by [a], [#1, [¥], [6] respectively. A point common to

two level curves, say [a], [8] or [B], [¥], will be denoted [ad] or [By]
respectively. Also we put

u(e) =4, n@)=B, =0, u@ =0

and if a subseript or a superscript occurs in «, f, ¥, 4 it appears again
in A,B,C, D, eg 13(72’) 20;,

Luvma 1. Let v (@), p =1,2, ¢ =1,2, be 4 real funciions, in-
creasing and continuous in the interval B = [0, 1]. There ewists a function
e, ms) of 2 variables, continuous in E* and which cannot be wriiten in
the form

(3) fley, m) = Y 2g[0" (@) + v*(22)],
=1

where the yx4(y) are real.
Proof. Suppose we have obtained 4 distinet points of the form

(4) (@8], [@fel,  [ofi]l,  [0afal.

Consider a continuous function f(x,,x,) equal to 1 at the points

[ B81], [@285] and equal to —1 at [a;f,], [a,f,]. If f admitted the repre-
sentation (3) we should have

A1+B1 =1, Az+Bz =1,
A,+By = —1 Ay+B, = --1.

These equations are contradictory, for by addition they give 2 = —2.
Hence f is not representable in the form (3).

To complete the proof we have to construct the 4 distinet points
mentioned above.

We may suppoge that two level curves [a], [f] do not meet in two
distinet points Py, P,, for, in this case, every function of the form (3)
would have the same value at P; and P,.

We conclude that a level curve [B] cannot cover a square. Hence
one of the increasing functions y2(a), p(2,) is strictly inereaging and
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therefore the coordinates of a point P of [B] are continuous functions of
a parameter 7.

We deduce that if [o,], [a] meet [B1, then every level curve [a] for which
a lies between a, and a, meets also [f1. In fact, iy, t, being the values of the
parameter ¢ for the points [a;8], [e,f] and putting

P (o, (1) + w2 (2 () = v (),

we have () = ay, p'(fy) = a,. Hence, since y! is continuous: P(t) = «a,
for some ¢ lying between ¢, and ?,. This shows that [a] and [B] intersect.

Tet now [e,] be any level curve. Choose 3 distinet points Py, Py , Ps
on [a,] and let [B,], [B.], [Ba] be the (distinct) 3 level curves through
P,,P,,P,. Let P}, P;,P; be 3 points situated on [5,], [B:], [Ba] Te-
spectively but not on [a,] and let [ar], [as], [a;] be the 3 level curves
through these points. Two at least of the differences 0 —ay, 0;— 0,
a,— aj will have the same sign, say a, <aj, @; < @;. Let o, be any num-
ber in the open intervals (a,, oy), (a5, oz). Since [a;], [ei] meet [B4]
(in P, and Pj) we conclude that [a,] meets [,]. In the same way [aa]
meets [B,]. The 4 distinet points (4) are now constructed.

LEmuMA 2. Suppose that v*(z), p=1,2, ¢ =1,2,3, are 6 fized
functions, real, increasing and continuous in E' and suppose that every
Funotion of 2 variables f(z,, ©,) continuous in E? may be written in the form:

(5) Flan, @1) = D) gal' (@) + ™ (@],
=1

where the 7,(y) are continuous. y being any number interior to the interval
of variation of p®3(w,)+yp®2(x,) in E* and ¢ >0 being given denote by I,
the closed set of points (zq,@,) of E? for which y—e < ¢ (2)+ ™ () <
<y-+e. Then to every I'y and every positive mumber k we can associate
a continuous function g(mi,xs) of modulus <1, vanishing ouiside I,
and 4 numbers B, B', B, B such that for every continuous function f (w1, 2)
coinciding with g in I, we have

22 (B)— 1:(B) — 12(B")+ 2 (8") 2 k.

Proof. We shall give the proof for ¥ = 8. For k = 12,16, 20, ...
the proof would be the same with one or several more steps.

Let [y,] be a level curve in I';. On [y,] the function a; = P11 (zy) -+
42 (wy) canmmot remain constant. In fact, suppose that (@) + p*(2,)
is constant on [y,]. The function '2(s,)+ ¢**(x,) may not take the same
value at 2 distinet points Py, P, of [y;], for, in such a case, we should
have for any continuous funetion f of 2 variables: f(P,) = f(P,). Thus the
image of [y,] by p2(®,)+ v (z,) is an interval I not reduced to one point.
Choose in E2 a closed square § not meeting [y;], but so small (and close
to [y,]) that the value of y*2(m:)+ y**(@,), for (@, %,) in §, is in 1. Let
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flaey, #5) be a continuous funetion, vanishing in [y,], but arbitrary in 8.
‘We may suppose, by adding a constant to each of the 2 functions y,, y,,
that we have y;(e;) = x3(y1) = 0. We conclude that y, = 0 along the
curve [y,], i. e. that x,(8) = 0 for any B <I. In the square § we ghould
have f = x;+ ys, which is impossible for the arbitrary funetion f, accor-
ding to Lemma 1. This contradiction shows that y'*(w,)-- 2 (x,) is not
constant on [y,] and a similar argument shows that o'(wx,)- 2 (z,)
is not constant on any part of [y,] situated in a square 7' no matter how
small. In particular [y,] or any other level curve cannot cover T,

Thus on [yl] the funetion 9 () y* (w,) takes at least 9 distinet
values, say ai, . iy ;. On each eurve [a}] choose a point P' not situated
on [y,] and let ['y 1 be the level curve through P¢. 5 at least of the diffe-
rences (y,— ") will have the same sign, say y,— ' > 0fori==1,..,5.
If y, is any number situated in the intervals (y,,9%, i =1,..., o, we
see, ag in the proof of Lemma 1 that [y,] meets each of the eurves [ai],
4=1,...,5, at some point [aly,] and we can chose ys a8 close as we
like to ;.

Let [B31,4 =1, ..., 5, be the 5 level curves through the points [aly,].
We can manage to obtain 5 distinct values fi. To see this we show that
one cannot have e. g. f; = p;, except for one value of »,. In fact suppose
[hat p} = p3 and that for y; s v, the curves [fi'] and [B2'] through
taly;] and [a}y;] coincide. The 4 points [alys], [aipa], [aipsl, [od7i]
are distinet since o} # of and y, # ys. If f(#,, @) is 2 continuous function
equal to -1, —1, —1, 41 respectively at the mentioned points and
if f(#,, #,) admits the representation (5) we should have

Ai’i‘B;'I—Os =1, -Ai+B;’+OzI = —1,
A§+B;"|‘Oa = -1, A%‘}‘B;"f“oi =1,
whence the econtradiction 0 = 4.

Thus we can find a value y, as close as we like to y,, and b distinct
level curves [fi], i =1,...,5, meeting [y,] at the points [aiys], © =
=1,...,5.

Next we can find a value y; a8 close as we like to y, and 3 distinet

level curves [of], ¢ =1,...,3, meeting [y,] at the points [Biy,], ¢ =
=1,..,3.

Fmally we can find a value y, as close as we like to ¥s and 2 digtinet
level curves [i], ¢ = 1,2, meeting [y,] at the points [y, 4 =1,2.
Consider now the sequence of 8 points
[ai y1l, [a y1l,
[a B Y21, [of ‘Bﬁ ¥al)
[as 13; vsl, [a§ !33 ¥l
[o5 Bi val, [o fi 74).

 iom®
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Let [B;] and [B;] be the level curves through the first two of these
points and let g¢(x,,x,) be a continuous function of two variables, of
modulus <1, vanishing outside I';, and taking the values 41, —1, —1,
+1, +1, —1, —1, -1, respectively at the 8 points mentioned above.

It f(®,,x,) is any function of 2 variables, continnous in E?, coin-
ciding with g in I3, and admitting the representation (5), then

A1+Bo"r“01 =1, A%+B%+Cl = —1,
A}+B;+Oz = -1, A§+B§+Oz =1,
A:§+B.§.+Ca =1, Ag‘}‘Bg‘f‘Oa = -1,
A%'!"Bi‘f‘a; = —1, §+Bi+04 =1.

Whence

By—B,—B;+B; = 8,

Zz(ﬁé)_)&(ﬂ}t)—Zz(ﬂ%)‘%z(ﬂi) = 8.
Lemma 2 is now proved.
Levva 3. If " (@), p =1,2, ¢=1,2,3, are 6 fized functions,
real, increasing and continuous in K, then there exists a real continuous
function of 2 variables f(z,, @) which cannot be written in the form

3
) Flor,m2) = ) tal9"(m2) + 9% (2)],
g=1

where the xq(y) are continuous.

Proof. Let I;" be a sequence of closed disjoint sets of the form in-
dicated in the statement of Lemma 2. To every # we can associate a con-
tinuous function g,(x,,x,) of modulus < 1/n2, vanishing outside I
and 4 numbers B, B, frn s B such that, if f(z;, x,) coincides with gn
in I'* and if f admits the representation (5) then

(6) 2a(Bn)— xa(Bn) — 22(Bn) + 22 (Bn) = n
Put

@y, @) = Zgn(wly @2)»

Then f is continuous in H2 If f could be written in the form (5),
relation (6) would be true for every n and the continuous function g,
would not be bounded. Thus f cannot be written in the form (5) with
continuous y,(y). !

CoroLLARY. Under the same conditions as in Lemma 3, if S is any
square. (closed or open) in E?, then there exists a function f(x,, ©,) real and
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continuous in B2 which does not admit the representation (B) in S with eon-
tinuous x,(y).

Levma 4. Suppose that v*(z), p =1,2, ¢ =1,2,3,4, are 8 fized
functions real, increasing and continuous in B, and suppose that every fun-
ction of 2 variables f(z,, ©5), continuous in H* may be written in the form

@ Floy, @) = D) 2aly' (m)+ v ()],
=1

where the y,(y) are continuous. To every open square Sy in B* we can asso-
ciate an open square Sy C 8, such that if Py = [a,0,], Py == [ay0,] are
any two points in 8y, then there are two points Qq, @y in Sy of the form
Q1 = [@201], @y = [010].

Proof. It is impossible that for every point P = [ad] of §, the two
curves [a] and [8] coincide in §,. For, in such a case, we should have
for some funection ¢(y):

M P (@) + 9™ (@) = @lp* (@) + ™ ()],

for every (zy,x,) in 8,. We gee immediately that ¢ is continuous. But
then, relations (2) and (7) show that an arbitrary continuous function
of 2 variables would be representable in §, as sum of 3 functions y,.
This is impossible by the Corollary to Lemma 3 and our assertion is pro-
ved.

Also, by the same Corollary, no level curve may cover a square, $0
that we conclude, as in the proof of Lemma 1, that the coordinates of
a level curve are continuous functions of a parameter ¢.

Thus there exists a level curve [a;] such that along this eurve and
inside 8, the function & = ¢™(x,)+ p*(2,) takes at least 2 values (and
even 3 values). We conclude as in the proof of Lemma 1 that there are
4 distinet points

Pr=[ad], P, =I[g&], Qi =I[wdl, @ =Ilad]
situated in 8, (with a; # a;, 8; # &;).

Observe now, since the 3" (x,) are increasing, that every portion of
a level curve limited by 2 points R,, R, is entirely contained in the ver-
tical rectangle of B2 whose diagonal is B, R,.

Suppose, to fix the ideas, that of < a5, d; < &,. Then, for every
ae(ay, az), de(d;, 8;) there exists a point P = [ad] sitnated in S, In
fact, since [a;] and [o;] meet [6;] in Pj and @y, then the curve [a] meets
[8:] at a point R, situated in the vertical rectangle whoge diagonal is
P,Q;. Similarly, [a] meets [d;] at & point R, situated in the vertical
rectangle whose diagonal is P,, Q;. We conclude that [6] meets [a] at

©
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& point P situated in the vertical rectangle whose diagonal is B,R, and
therefore situated in S§,.

Choose now an open square S; = §,, containing P, and such that
it Py = [a;6,]e8:, then e;e(a;, ;) and 6,¢(dy, &;). If therefore P, and
P, = [a,6,] are two points of §,, then there exists two points Q,, Q,
of the form @, = [0,6,], @, = [a;6,] situated in §,. Lemma 4 is now
proved.

Lumma 5. Let ¥ be an open square, 2k an even integer. We can find
an open square U’ < A such that if [a;], ..., [asr] are level curves meeting
A, for which an « with an even subscript differs from an o with an odd sub-
seript and if we start from & point [ayy,] in 2, then the “By-alternating
column of length 2k for the a”:

[ay B1 7]
[a2 By 72]
[2s Bs ¥l
[os Bs v.]

(8)

[osr Bar—1 P2l

exists and the poinis are in .

Proof. For simplicity we take 2k=4, so that the last point is [a,8,y,]-

Put 2, = A and let 2y = 2, be such that if [ayfs] and [af,] are
in ¥, then a point [a,f,] exists in 2,. This comes to say thab if [agBeys]
is in ¥, and if [o,] meets 2; then [a,f,] is in 2,.

Next let 2, = 2; be such that if [a,p,] and [a,y,] are in U, then
a point [a;y,] exists in 2;. This comes to say that if [ayf,y,] is in 2,
and if [a;] meets 2,, then a point [ayy,] exists in ;.

Finally, take 2, = 2, such that if [a;8;y,] is in U, and if [a,] meets
A, then [a,B,] exists in 2A,.

Therefore, putting %' = 2, and starting with a point [a,8,y,] in
', we find successively that [a,fyy.]eUs, [azBayale s, [ayfs]e, = 2.

Lemma 5 is now proved.

Definition. Instead of a py-alternating column of length 2% for
the a, we define what may be called a double Sy-aliernating column of
length & for the 6 as follows (where we suppose that all points of inter-
section considered do exist).

We start from 2 different level curves [y,], [y,] meeting [d,] and
look for a 8, > §, such that the 2 points

Py = [By706:], P{ = [13;76 6,1


GUEST


256 R. DOSS

have different p's. Then take a d, > 0y such that the 2 points
P, = [B1y2da], Pi = [f1720:]
have different y’s. Next take a 83 > dy such that the 2 points
Py = [fsy20s], P, = [1%7’2' 85]
have different f’s and then &, > 6, such that the 2 points
P, = [Bay404), P//x = [ﬁ:;?’l‘sa]
have different y’s, and so on.
If the process stops, i e., if, for example, for every 4 > 4,, in some
neighbourhood of 4,, the points
Py = [B57465], Py = [/35'}’4"35]
have the same f’s, then take an increasing sequence &, ..

Py = [Bsvadel, Py = [.36%:55],

Pr= [Brvadels  Pr= [Bryidsl.

Remark 1. We see easily, by using Lemmas 4 and b that we can
always construct a double By-alternating column for the d, for which
all points are in a given open square D.

Remark 2. If a function f(z @,) admits the representation (2)
and if it takes the values -1, —1,..., +1, —1, at the points of a fy-
-alternating column of length 2k for the a, then

(Al_Az'i" - +A2kﬁ1—Azk) + (D, —Dy+-.. -+Dzlc_1”“-D2k)+Oo"‘02k = 2k.
‘While if f takes the values

., 0, and put

fPy) = +1, f@P)=-—1,
fPy) = =1, f(P3) = +1,
f(Py) = +1, f(P3) = —1,
f(P) = —1, f(P) =+1,

at the points of a double fy-alternating column of length % for the 4,
then

(Ay—Ast .ok Ay) — (A — A+ £ 4+
44 terms at most in B or C = 2k.
In this case all the D’y disappear.

icm
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Proof of the Theorem. Suppose that every continuous function
fl®y, x;) admits the representation (2).

Let 8 be an open square and % a given positive integer. We suppose,
for the moment, that all points oceuring in our construction exist and
are in §, and that if a function is supposed to take the values +1 and
—1 at 2 points, then these 2 points are different.

Congider a By-alternating column of length 2k for the «, say the
column (8), and a function f taking values +1,—1,...,+1, —1 at
the points of this column. Then

{1} (Ay—do+.. + Ay 1 —Ay)+ (D —Dy+. .. +Dye_1 —Du) +
42 terms at most in € = 2k.

Some of the &’s in {1} with an even subscript may be equal to some
&’s with an odd subscript. In that case an even number of D’s disappear
from {1} leaving only e.g.

{17 (A, A+t Ap 1 —Aw)+ (Dawir—Dagea+ oo+ Doy —Dar) +
+2 terms at most in C = 2k.

But now 2 6 occuring in {1’} with an even index is different from
a 6 with an odd index.

Consider a fy-alternating column on length 2k— 2%’ for these rema-
ining &’s and suppose that f takes the valwes —1, +1,...,—1,+1
at the points of this column. Then

{1”} - (D2k'+1_ 2k'+2+ nee +D2k~1 _Dzk)_
(Al — Ayt oo+ Aby_y—As)+2 terms at most in 0 = 2(k—F').

To this we add the points of a double fy-alternating column of length
k' for the & and suppose that f takes the values —1, +1, —1,... and
+1, —1, 4+1,... at the points of this double ecolumn; then, with a con-
venient notation

1" —(Aj—As+ . A —Ap)+
+4 terms at most in B or ¢ = 2k,

Then, by {17}, {1"}, {1'"""}:
{9} (Ai—Agt.. A —Ap)—(A]—As+ ..+ Ap_ 1 —An)+
+2-6 terms at most in B or ¢ = 2-2k.

There is no harm in writing “2-6 terms at most” instead of 8 terms.
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Now we deal with the expression (Adj—A;4...+-dg 1 —4;5) as
we have dealt before with (D].——_Dg—l—-.--“|‘—D2kA1'—-D2h)a getting

8 (Ai—dyt . F Ay —An)+ (D —Dy+ ...+ Dy y — D)+
+3-6 terms at most in B or ¢ = 3-2k.
After 2% steps in all we obtain
{28} (Aa—dato Al — o) — (AP — APt Al )+
+2k-6 terms at most in B or ¢ = 2% 2k.

This relation will be used later.
But we want first to justify our procedure.
The open square S being given, choose an o S
‘ The ’ pen square D, whose clo-
iure isin & ‘a.ncl (iet D = Dy, be the square associated with Dy by Lemma
B, so that if (&61’]', ..y [6)1 is a sequence of level curves meeting D,
for which a6 ) with an even index is different from a 6% with an oddi
index and if we start from a point [6{9y("] in D;, then the fy-alternating
column of length 2% for the § exists and the points are in Dy,.
" t’?fakgﬁ) a,ny“r curve [gc] meeting D;,. We can find an interval I, such
at it 60 I, the1.1 [6%] meets Dj,. The curve [4] goes outgide 9D;. Take
2 point on [§] outside D, and an open square 20 in §, whose closure does
ndo(g) meet 4®k,,such thatb if, [6M] meets 2, then 6™ el,, and consequently
Ena, ]E’meets Dy.. Then let Ay, be the open square associated to 2 by Lem-
Sqluafog We.opgfmte with 2}, as we operated with @,,. We define an open
e Vy_; in 8, whose closure does not meet 2[ i i
e o s eet 2Dy, and its associated
Next we define an open square 20,_, i
; x—1 in 8, whose clogure doe t
meet 2~ D, and its associated square 21[,;_1. ’ SR
. SThe process can be continued until we reach an open square 2,
in ,N not meetl_ng @1‘\,2[2u®2u...u2[ku®k, and its associated square ;.
. ow we start with a gy-alternating column of length 2% for the «
s‘zfl fhe co%umn (8), fox: which the level curves [a,], ..., [ay,] meet 2
ZE do; _Whmh the o’s with an even index are different from the ’s with
o ’:he gjielirz:' start 1from a point QEalyoj in 2. Then all the points
¢ - Ing column are in 2. The conditi i sod
i U e atng © . nditions imposed on f
meetNQe{xt the &'s oeceuring in column (8) are such that their level curves
e 11 and consequently meet D]. Now if we consider a py-alterna-
resioz?ﬁ Illlzémpgf)hgmn ‘ﬁf 1iength Q)Z(k—k,) for some of these &%, the cor-
! 1nts will be in 9D,, and consequently a i
the points which occured ea.rlier, in oA, ! ¥ e different from

—— om®
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When &' > 0 we have to add a double fy-alternating column of length
%' for the §. We can always manage to have the corresponding points
in ®,, with &’s that are different from the finite number of &’s which
already occured in our construection.

Hence the conditions imposed on f(z,, #,) in D, ean be realized. And
we can go on in this way.

Thus the procedure used to obtain equation {2k} is justified.

This equation contains 4k-12k = 16k terms at most on the L. h. s.

while the r.h. s is 4%%

Take &k — #f. We may state the following result.

To every open square §, we can associate a continunous funetion
gn{ms, %), equal to zero outside S, of modulus < 1/n?, such that, for
any continuous function f(z,, ,) eoineciding with g, in S,, and admitting
the representation (2) we have, for some values of a,f,y, 0:

At most 161 terms in A, B, C, D = (1/n2)4nS = 4n’.

Tf we choose a sequence of disjoint S, and if we pub

o0
fly, @2) = D) gnl@1; 72),
n=1
then f(&,, %) is continuous and coincides with g, in §8,. Denote by M
an upper bound for |4}, |B|, |G|, |D|. Then
16m2M > 4nt, M =nl4.

This last relation is impossible if the y,(y) are to be continuous.
Therefore f(z,, ©,) cannot admit the representation (2) and the theorem

is proved.
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