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distinet from a, in common. Consequently for » sufficiently large, the
simple are h(L;,) intersects one of the ares h(Ly), h(Len), A{Ds,), in
a point # a@,. But this iy impossible, because 7 is a homeomorphism
and for » > 2 the arcs Ly, Ly, Lsn, have with the are IL,, only the
point @, = h(a,) in common.

Thus the proof of the theorem is complete.
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ON CANTORIAN MANIFOLDS IN A STRONGER SENSE
BY
A. LELEK (WROCEAW)

Modifying the original definition of Cantorian manifolds, given by
Urysohn in 1925, Alexandroff determined in 1957 (see [1] or § 1 below)
a class of compacta that will be called here Cantorian manifolds in the
stronger sense. The question has recently been raised by Borsuk whether
every Cantorian manifold which is an ANR-set is a Cantorian manifold
in the stronger sense. In the present note we answer this question in the
affirmative for the 2-dimensional case (see §3), and find a 3-dimen-
sional counter-example (see §4). Related topics are also examined.

§ 1. Four kinds of Cantorian manifolds. Roughly speaking, Can-
torian manifolds are compacta whose separators have large dimen-
sions. We recall that a set S is said to be a separator of the space X bet-
ween the sets A and B if there exists a decomposition X —8 = MUN
such that X~AN =0 = M~N, ACM and BCN.

Let X be a compactum, i. e. compact metrie space. Following Ale-
xandroff (see [1], p. 70), for every integer », we consider the condition:

(U") If A, BC X are closed sets containing interior points, then every
closed separator 8 of X between A and B satisfies

n—1 < dim§S.

Evidently, condition (U") is equivalent to the inequality n < deX
(see [5], p. 105). Since one always has dc X < dim X, and the Cantorian
manifolds are characterized by the equality deX = dimX (ibidem),
the following-property (U) of the compactum X is necessary and suffi-
cient for X to be a Cantorian manifold:

(U) Condition (U™) holds for n = dim X .

Since, for compacta §, the inequality n—1 < dimS is equivalent
to the inequality 0 < d,_,(S), where d,(S) denotes the m-dimensio-
nal degree of § (see [5], p. 60), Alexandroff’s modification of condition
(U™ is the following (see [1], p. 70):

(V") If A,BCX are closed sets containing interior poinis, then there
exists a number o >0 such that every closed separator 8 of X between
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A and B satisfies
o< dy1(8)-

Now, the compactum X with the following property (V) will be eall-
ed a Cantorian maenifold in the stronger sense:

(V) Condition (V") holds for n = dimX.

A small change in the example given by Alexandroff (see [1], p. 68)
yields a 2-dimensional locally comnected Cantorian manifold which is
not 2 Cantorian manifold in the stronger sense (see fig. 1). But it is not

Fig. 1

an ANR-set. This gives a motivation to Borsuk’s question mentioned
at the beginning of the paper.

It is easily seen that each Cantorian manifold has the same dimen-
sion at each of its points. This leads to the definition of a third kind of
Cantorian manifolds, namely of those which are distinguished among
compacta X by the following condition (see [1], p. 73):

(V') There is an integer n such that dim,X =n for <X, and if
A, BCX are closed sets satisfying

dimAd > n < dim B,

then there exists a number ¢ >0 such that every closed separator 8 of X
between A and B satisfies
o < dn_1(8).

Further, the uniformity of (V') can be defined as follows:

(V') There is an integer n such that dim,X = n for zeX, and for
each number § >0 there ewists a nwmber ¢ >0 such that if A, BCX
are closed sets satisfying

dn(4) > 6 < dy(B),
then every closed separator S of X between A and B satisfies
o < dp_1(S).

At last, a fourth class of Cantorian manifolds is determined by @
sharpening of condition (V') to the following one, which has been sug-
gested by a result due to Sitnikov (compare {17, p. 74):

icm
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(V") There is an integer n such that dim,X =n for z<X, and if
A,BCX are closed sets satisfying

dim4d =zm < dim B,

then there ewists o number o >0 such that every closed separator S of X
between A and B satisfies

o <dp_1(8)Y or o< du(8)

for m =mn or m < m, respectively.

Condition (V’’) implies Alexandroff’s condition (W), which is for-
mulated in a different manner (ibidem). The question whether these two
conditions are equivalent for compacta in general, seems to be open.

As above in the case of condition (V’), compacta for which condition
(V") uniformly holds are the following:

(V'"), There is an integer n such that dim,X =n for z¢X, and for
each number & > 0 there ewists a number o >0 such that if A, BC X
are closed sets satisfying

dn(4) > 6 < dn(B),
then every closed separator S of X between A and B satisfies

o< dn_1(8) or o<du(S)

for m = n or m < m, respectively.

Finally, let us remark that the compacta X for which conditions
(V") or (V) uniformly hold (with respect to the diameters of massive
spheres contained in A4 and B, for instance) are actually the same for
which conditions (V") or (V) ordinarily hold, respectively. Thus neither
the uniformity of (V*) nor that of (V) constitutes a new property.

§ 2. Separators in locally connected compacta. Let 4,, 4,,...
be subsets of & compactum X. The symbols Lid;, Lsd;, and LimA4;,
‘which we use in the sequel denote the topological limits of the sequence
of sets 4; in X when the subscript index ¢ tends to the infinity (see [4],
p. 241-245).

2.1. Let X be a locally connected compactum. If A; B;C X and
8;C X is a separator of X between A; and B; for ¢ =1,2,..., then LsS;
8 o separator of X between LiAd;—LsS; and LsB;—LsS;.

Proof. Denote by M the union of all the components of X — LsS;
which intersect Lid;, and by N the union of all the remaining com-
ponents of X—Ls§;. Then X—TLs8; = M N and Lid;—LsS;C M.
Since every component of X—LsS; is an open set (see [4], p. 243 and
[6], p. 163), M and N are digjoint open sets. Hence M~N =0 =
= M~N.
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To prove that LsB;—LsS; C N, suppose on the contrary that there
is a point geLsB;—Lsf; such that geX—N. Thus there exists an infi-
nite sequence of points ¢; satistying g;eBy, for i =1,2,..., limf; = oo
and limg; = g. Moreover, we have ge M and so we can find a compo-
nent ¢ of X— LsS; which contains the point ¢ and & point peLid;. Con-
sequently, there exists an infinite sequence of points p; satisfying p; edy,
for ¢ =1,2,... and limp, = p. The space X being locally connected,
let us take closed connected neighbourhoods U and V of points p and g,
respectively, such that T C 0 and V CC. Since the set ¢ is connected
and open in X, there is an are L C € which joins p and ¢. The union
K = UJuLUV is therefore a continuum, which contains both points
p; and ¢; for a sufficiently large 4. It follows that the set S meets the
continnum K for a sufficiently large ¢, and we conclude by the equality
limk, = oo that the sets LsS; and K intersect, which is impossible De-
cause K C 0 C X—1LsS;. This completes the proof of 2.1.

It is clear that the locally connected continuum considered in §1
(see fig.1) admits irreducible closed separators with arbitrarily large
number of components. However, this continuum is not LC?, i. e. locally
connected in dimensions 0 and 1 (see [5], p. 506).

2.2. If X is an LC' compactum, then there exists an integer m such
that every irreducible closed separator of X between two points consists of
at most m components.

Proof. Using Eilenberg’s notation, put m = r(X)41 (see [2], p. 153).
Since X is 1O, r(X) is finite (see [2], p. 178 and [3], p. 117). If § is
an irreducible closed separator of X between two points, then there is
a component ¢ of X—§ such that 0—0 = § (see [5], p. 175). Hence
X =C0u(X—0) is a decomposition of X into continua (ibidem, p. 88,
163 and 175) whose common part is 8. This shows that the number m
satisfies 2.2.

§ 3. Existence of finite separators. If a space is cut by a finite
set ¥, the cutting F fulfils the condition d,(F) < & for every & > 0. With
the restriction to LC! compacta the inverse holds too.

3.1. Let X be an LC compactum. If A;, B;CX are connected sets
and 8; C X is a separator of X between A; and B, satisfying
(*) @.(8;) <1fi  for

then there exists an infinite sequence of integers Ty << ky < ...
set B such that

=1, 9
t=1,2,...,

and o finite

FCLs Skq:
and F is a separator of X between Lidy,—F and LsBy,—F.

Proof. The space X being locally connected, the separator §; con-
tains an irreducible closed separator I; of X between A4; and B; for i =

icm
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=1,2,... (see [5], p. 97 and 176). Let k; << k, < ... be such a sequence
of integers that the sequence I , Iy,, ...is convergent, and put ¥ = LimI;,
(ibidem, p. 21). Thus FC LsSy. Since d&;(I;;) < d,(8y) <1/k; for
4 =1,2,..., the diameters of components of I, converge to zero when
% tends to the infinity. It follows from 2.2 that the set F is finite. The
last assertion from 3.1 is 2 consequence of 2.1 because F = Lsly,.

3.2. Let X be an LC! compacium. If A, BCX are connected sets
and 8; C X is a separator of X between A and B salisfying (+), then there
exists a finite separator F CLsS; of X between A—F and B—F.

Proof. Putting 4, =4 and B; =B for i =1,2,..., it is suffi-
cient to apply 3.1.

Note that econditions (U°) and (V) (see § 1) can be understood to hold
for each space X. Similarly, conditions (U!) and (V1) are always equi-
valent. Of course, conditions (U?) and (V2) are not equivalent in general
(see fig. 1).

3.3. If X is an LO' compactum, then conditions (U?2) and (V2) are
equivalent. :

Proof. Clearly, (V?) implies (U?). Suppose (V?) is not true. Then there
are such closed subsets 4, B C X containing interior points that there
exists, for every ¢ = 1,2, ..., a closed separator S; of X between 4 and
B satisfying (+). If at least one of the sets A4 and B contains only dege-
nerate continua, a massive sphere contained in it is 0-dimensional (see
[5], p. 130), whence the space X is not connected, and so (U?) is not
true. If both sets A and B contain non-degenerate continua, say A and
B', respectively, it follows from 3.2 that there is a finite separator F of
X between A'—F and B’—F, and there are points ped’'—F and qge B’ —F.
The O-dimensional set F is thus a separator of X between sufficiently
small closed neighbourhoods of p and ¢, which means that (U?) is not
true, and 3.3 is proved.

3.4. If a 2-dimensional Cantorian manifold is an ANR-set (or only
LCY), it is a Cantorian manifold in the stronger sense.

This directly follows from 3.3.

3.5. If X is an LC' compactum and dim X < 2, then all conditions
(U), (V), V), (V)y, (V") and (V''), are equivalent.

Proof. Evidently, condition (U) is implied by and condition (V‘),
implies each of the others. It is enough to show that (U) implies (V'),.

Suppose (V''), does not hold and denote #» = dimX. If dim, X < =
for any @¢X, condition (U) does not hold. We can thus assume that
dim, X = n for every weX. Consequently, there exist a number 6 >0,
an integer m < n, closed sets A;, B; C X, and closed separators S; of X
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between A; and B; (i =1, 2,...) such that

(**) dm(-A't) > é < d'm. (Bi)9
1 An_1(8;) £ m=mn
ek - { 1V ’
) % = dn (8:) it m<a,

for i =1,2,... Then n =1 or 2. If n = 1, the degree d,(S,) is finite
by (+++), and so it is zero, which means that the separator 8, is empty while
neither the set 4; nor B, is so, according to (++). Therefore (U) does not
hold. If n =2 and m = 0, (U) does not hold for the same reason.

If n = 2 and m >0, we have (») for m = 1, the inequality d,(¥) <
< 4,(Y) being always true. Since X is a compactum, we can assume
that the sequences 4,, 4,,... and B, B, ... are both convergent (ibi-
dem, p. 21) and all their terms are continua (ibidem, p. 64 and 122).
.T:‘ut A =TLimA; and B = Lim B;. Inequalities (x) for m = 1 imply the
1?equa,lities d,(4) > 6 < d,(B) (ibidem, p. 61), whence 4 and B are in-
fmﬁ:,e sets. Further, (+++) yields (+) and we infer from 3.1 that there exists
an infinite sequence of integers &, < %, < ... and a finite separator ¥
of X between Lid,,—F and LBy, —IF. But since A CLiAd, (see [4]
D- 242 and 245) and B C LiBy, C Ls By, (ibidem, p. 244), the set; Lid, —-lf;
and ‘LsB,ci—F are not empty. Taking points p and ¢ in these sets ires-
pectively, we see that ¥ is a 0-dimensional separator of X between :sufﬁ-
clently small closed neighbourhoods of p and ¢. As dim X = n =2
(U) does not hold, and the proof of 3.5 is completed. ’

3.6. Let X be an Lpl compactum. If A,B,CCX are seis such that
A and B consist of a finite number of components and, for every nwmber
¢ >0 and every open set G C X containing O, there is a separator S CQ

of X between A and B satisfying d,(8) < e, then T contai i
NI -
tor F of X between A—F and B—l—lﬂ. ’ * o finite separa
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Proof. The theorem is readily reduced to the case where 4 and B
are connected sets. According to the hypotheses concerning O, we can
choose an infinite sequence of separators 8;, Sp, ... of X such thab (*) is
satisfied and S; lies in the (1/i)-neighbourhood of ¢ for ¢=1,2,...
Then LsS; C C and 3.6 follows from 3.2.

Let us observe that theorem 3.6 fails for 4 or B consisting of an
infinite number of components (see fig. 2).

In the above example the sets 4, B, and C are closed; however the
set ¢, which consists of all cut points, intersects the set B. As the next
theorem states, under the condition that all the sets A, B, and C are
closed and the set O does not meet the union AUB, the hypothesis in
3.6 that A and B consist of finitely many components can be omitted.

3.7. Let X be an LC compactum. If A, B, C C X are closed seis such
that ALB C X—G and, for every number ¢ >0 and every open set G C X
contwining C, there is a separator S CG of X Dbetween A and B satis-
fying d(S) < &, then C contains a finite separator of X between A and B.

Proof. First we prove that the compactum AUB is contained in
the union of finitely many components of X —C. Indeed, suppose on the
contrary that there is an infinite sequence of components Gy,Gs, ...
of X—(C which intersect AuB. Then they are open sets (see [5], p. 163)
and have boundaries Fr(Gy) CFr(X—C)CC for i=1,2,... (ibidem,
p. 169). Consequently, Ls@; C LsFr(G;)C C (ibidem), which gives

0 # (AuB)~1sG; C{4UB)NC,
contrary to the hypothesis.

Thus there are components G, ..., G, of X —C such that 4 CGyo...
UG, and A~G #£0 for i=1,...,k Since 4~(G;—G)CA~C =0,
the set A~@; is compact for 4 =1,..., k. There exist now continua
K,C@; such that 4~G,CE; for i =1,...,k (ibidem, p. 167). Hence

ACK =EK,u...0E;CX—C, A~K;#0
for ¢ =1,..., k. Similarly, there exist continua I; (¢ =1, ..., 1) such
that

BCL=L1\J...VL1CX—G, BAL; #0

for i =1,...,1. It follows that every closed separator of X between
A and B which does not meet the union K L is & separator of X between
K and L. The set X — (K UL) being open and containing C, the hypothe-
ses of 3.7 hold for K and L instead of A and B, respectively. But the com-
pacta K and I consist of at most & and I components, respectively. Apply-
ing 3.6, we obtain @ finite separator F C C = O of X between K —F and
L—F. Since ACK = K—Fand BCL = L—F, theproof of 3.7 is con-
cluded. ‘
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3.8, Let X be an LC* compactum. If A, B C X are closed sets and (! is
a O-dimensional separator of X between A and B, then O contains a finile
separator of X between A and B.

This instantly follows from 3.7, if one observes that € in 3.8 may be
assumed to be closed (ibidem, p. 97) and then it has already all the pro-
perties of § required in. 3.7.

3.9. Let X be an LO* compactum. If A, BCX are closed sets and
C is a separator of X between A and B such that dim, X < 1 for weC, then
C contains a finite separator of X between A and B.

Proof. As previously, we can assume that ¢ is closed. Takoe an arbi-
trary open set G C X containing €. Since C is a separator of X between
A and B, we have 0 CGF—(AuB). Choose a finite cover V...,V
of ¢ composed of open sets V,; with 0-dimensional (or empty) bounda-
ries and closures V; contained in G— (A_B). This exists aceording to
the hypothesis on C. Let 8 be the union of boundaries of the sets V', ..., ¥;.
O Dbeing a separator of X between A and B, so is §. Moreover, dim§ <0,
whence d,(S) = 0, and 3.9 follows from 3.7.

3.10. If X 4s o 1-dimensional ANR-set, then every separator of X
between closed sets contains a finite separator of X between these sels.

This is an immediate consequence of 3.9, as 1-dimensional T.C con-
pacta and 1-dimensional ANR-sets coincide (see [5], p. 289).

Remark that if X is a 1-dimensional ANR-get, 4 and B range over
all the subcontinna of X, and ¢ ranges over all the separators of X
between A and B, then the minimal number m(X; 4, B, 0) of points
of O constituting the finite separator of X that exists (by 8.10) be-
tween A and B is bounded (by 2.2), i.e. one can find an integer m(X)
satisfying m(X; 4, B, 0) < m(X) for all continua 4, B and separators C.
Simple examples show that the connectedness of 4 and B is neces-
sary here. . !

§ 4. Some 3-dimensional AR-sets. The first of the continua which
are described in this paragraph is the counter-example announced at the
beginning of the paper.

4.1. There ewists a 3-dimensional AR-sel that satisfics condition (U)
but not (V).

Proof. Let P, and P, be 3-cells in the 3-dimensional TWuclidean
space whose common part is a straight segment I (see fig. 3). Take an
arbitrary continuous mapping g of I onto the square I* and consider
the upper semicontinuous decomposition of the union P = P, P, into
the sets g~*(y), where yeI2, and the points belonging to P—1I. Accor-
ding to the well known Alexandroff theorem (compare [B], p. 42), this
decomposition induces a continuous mapping f of P such thatb fIP—1I
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is 2 homeomorphism of P—I onto f(P)—f(Z) and the set f(I) is homeo-
morphic to the set g(I) = I?, i.e. f(I) is a 2-cell. Since P, I, and f(I)
are ANR-sets, the image X = f(P) is also an ANR-set by virtue of the
Borsuk theorem (ibidem, p. 264). The ANR-set X being obviously con-
tractible, it is an AR-set (ibidem, p. 289).

To prove (U), it is enough to show that no closed subset ¥ C X
with dimension dim¥ <1 is & separator of X. In fact, let R; denote
the set of interior points of P; (¢ = 1, 2). Sinee f|R; is a homeomorphism,
we have dimf-1(¥Y)nR; <1 and we infer from the Mazurkiewiez theo-
rem (ibidem, p. 343) that R,—f-1(¥Y) is 2 connected set, dense in P,
for ¢ =1 and 2. Consequently, its image under f is a connected dense
subset of f(P;). But the set f(I)— ¥ is not empty and lies in the common
part of f(P,) and f(P,). It follows that the union

JIB = (O] D)~ Y]of [Ba— 2 (X)],

contained in X —¥, is a connected dense subset of X. Thus X —Y is a con-
nected set.

Now, let 4 and B be closed subsets of P, with interior points, con-
tained in P,—I and P,—I, respectively (see fig. 3). By the continuity
of f, for every number ¢ >0 there exists & number & >0 such that
e(p,p’) < e implies o[f(p),f(p')] <o/2 for p,p'<P. A rectangle T,
sufficiently narrow, near but disjoint with I (see fig. 3), cuts P between
A and B, and satisfies the inequality d,(T) < ¢. Then f(7T) is a separz-
tor of X between f(4) and f(B), and we have d&,[f(T)] < ¢, the map-
ping f|T being a homeomorphism. Since dim X = 3, condition (V) does
not hold for the AR-set X, and 4.1 is proved.

4.2. There exists a 3-dimensional AR-set that satisfies condition (V)
but not (V').

Proof. Let P’ be a 3-cell and I’ an arc on the boundary of P’.
Take a mapping ¢’ of I’ onto P’. Quite similarly as in the preceding con-
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struction (with P, I and ¢ replaced by P’, I’ and g¢’, respectively), ¢
yields a mapping f’ of P’ such that X' = f'(P') is a 3-dimensional AR-set.
Every open subset of X’ contains a 3-cell which is the image under f
of a 3-cell contained in the interior of P’. Consequently, condition (V)
holds for the continuum X' because of the fact that (V) is satisfied by
each 3-cell (see [1], p. 71). However, condition (V') does not hold for
X', if one chooses A' = f'(I') and B’ equal to an arbitrary 3-cell lying
in f(P'—1I')

4.3. There ewisis a 3-dimensional AR-set that satisfies condition (V'),
but not (V'').

Proof. The required AR-set X' is a part of the AR-set X constructed
in 4.1, namely X'’ = f(P;). It can be verified that for each number § > 0
there exist a number 5 > 0 and a 3-cell @, contained in f(P,—1I), with
the property: if Z C X' iy a closed subset satisfying the inequality 6 <
< d4(Z), then 5 < dy(Q@~Z). We infer that condition (V’), holds for X",
since it holds for each 3-cell (ibidem). Further, taking 4’ = f(I) and
B’ equal to an arbitrary 2-cell contained in f(P,—I), we can find for
every number ¢ > 0 a sufficiently narrow and near I rectangle 7'C P, —
such that its image § = f(T) is a separator of X'* between A’ and B",
and we have d,(S) < o. Consequently, condition (V") fails for X'’ (with
m = 2), and so proposition 4.3 is shown.

Observe that the above AR-set X'' in fact does not satisfy even
Alexandroff’s condition (W), weaker than condition (V') at first sight
(see §1). Really, the separator § with an arbitrarily small 2-dimengional
degree can be found in an arbitrarily tight neighbourhood of A4”.

§ 5. Final remarks. Denoting implications by arrows, we can write
down the obvious relations between classes of Cantorian manifolds in
the following diagram:

(V)< (V')
0 0
)u -~ (v”)'ll

By 3.5, all these implications become equivalences for 2-dimensio-
nal LC' compacta. There are easy examples (similar to the example
given in § 1, fig. 1) of 2-dimensional locally connected continua, thus
LC® compacta, for which we should reverse none of the above arrows,
respectively.

According to 4.1, 4.2 and 4.3, no horizontal arrow would be reversed
for 3-dimensional ANR-sets. The question concerning vertical arrows
Temains open:

P 419. Do (V') and (V") zmply (V') amd (V'*),, respectively, for ANR-
-sets with dimensions n = 3, 4,

(U) < (V) <

icm

CANTORIAN MANIFOLDS 247

REFERENCES

[1] P. Alexandroff, Die Kontinua (VP) — eine Verschirfung der Oaniorschen
Mannigfaltigheiten, Monatshefte fir Mathematik 61 (1957), p. 67-76.

[2] 8. Eilenberg, Sur les espaces multicohérents I, Fundamenta Mathema-
ticae 27 (1936), p. 153-190.

[8] — Sur les espaces mullicohérents II, ibidem 29 (1937), p. 101-122,

[4] C. Ruratowski, Topologie I, Warszawa 1958.

[6] — Topologie II, Warszawa 1961.

Regu par la Rédaction le 15.5. 1962


GUEST




