distinct from \(a_\varepsilon \) in common. Consequently for \(n \) sufficiently large, the simple arc \(h(L_{1\varepsilon}) \) intersects one of the arcs \(h(L_{2\varepsilon}), h(L_{2\varepsilon}), h(L_{2\varepsilon}) \), in a point \(\neq a_\varepsilon \). But this is impossible, because \(h \) is a homeomorphism and for \(n > 2 \) the arcs \(L_{1\varepsilon}, L_{2\varepsilon}, L_{2\varepsilon} \), have with the arc \(L_{1\varepsilon} \) only the point \(a_\varepsilon = h(a_\varepsilon) \) in common.

Thus the proof of the theorem is complete.

REFERENCES

Reçu par la Rédaction le 21.5.1962

ON CANTORIAN MANIFOLDS IN A STRONGER SENSE

by

A. LELEK (WROCLAW)

Modifying the original definition of Cantorina manifolds, given by Urysohn in 1925, Alexandroff determined in 1937 (see [1] or § 1 below) a class of compacts that will be called here Cantorian manifolds in the stronger sense. The question has recently been raised by Borsuk whether every Cantorian manifold which is an ANR-set is a Cantorian manifold in the stronger sense. In the present note we answer this question in the affirmative for the 2-dimensional case (see § 3), and find a 3-dimensional counter-example (see § 4). Related topics are also examined.

§ 1. Four kinds of Cantorian manifolds. Roughly speaking, Cantorian manifolds are compacts whose separators have large dimensions. We recall that a set \(S \) is said to be a separator of the space \(X \) between the sets \(A \) and \(B \) if there exists a decomposition \(X - S = M \cup N \) such that \(M \cap N = \emptyset = M \cap N \), \(A \subseteq M \) and \(B \subseteq N \).

Let \(X \) be a compactum, i.e. compact metric space. Following Alexandroff (see [1], p. 70), for every integer \(n \), we consider the condition:

\[(U^n) \text{ If } A, B \subset X \text{ are closed sets containing interior points, then every closed separator } S \text{ of } X \text{ between } A \text{ and } B \text{ satisfies } \n - 1 \leq \dim S. \]

Evidently, condition \((U^n)\) is equivalent to the inequality \(\n \leq \dim X \) (see [5], p. 105). Since one always has \(\dim X = \dim X \) and the Cantorian manifolds are characterized by the equality \(\dim X = \dim X \) (ibidem), the following property \((U)\) of the compactum \(X \) is necessary and sufficient for \(X \) to be a Cantorian manifold:

\[(U) \text{ Condition } (U^n) \text{ holds for } n = \dim X. \]

Since, for compacts \(S \), the inequality \(n - 1 \leq \dim S \) is equivalent to the inequality \(0 < \dim_{\omega-1}(S) \), where \(\dim_{\omega-1}(S) \) denotes the \(\omega \)-dimensional degree of \(S \) (see [5], p. 60), Alexandroff's modification of condition \((U^n)\) is the following (see [1], p. 70):

\[(U^\prime) \text{ If } A, B \subset X \text{ are closed sets containing interior points, then there exists a number } \sigma > 0 \text{ such that every closed separator } S \text{ of } X \text{ between } \]

Colloquium Mathematicum X.2
A and B satisfies
\[\sigma < d_{n-1}(S). \]

Now, the compactum \(X \) with the following property (V) will be called a Cantorion manifold in the stronger sense:

(V) Condition (V') holds for \(n = \dim X \).

A small change in the example given by Alexandroff (see [1], p. 68) yields a 2-dimensional locally connected Cantorion manifold which is not a Cantorion manifold in the stronger sense (see fig. 1). But it is not an ANR-set. This gives a motivation to Borsuk's question mentioned at the beginning of the paper.

It is easily seen that each Cantorion manifold has the same dimension at each of its points. This leads to the definition of a third kind of Cantorion manifolds, namely of those which are distinguished among compacta \(X \) by the following condition (see [1], p. 73):

(V') There is an integer \(n \) such that \(\dim_n X = n \) for \(x \in X \), and if \(A, B \subseteq X \) are closed sets satisfying
\[\dim A \geq n \leq \dim B, \]
then there exists a number \(\sigma > 0 \) such that every closed separator \(S \) of \(X \) between \(A \) and \(B \) satisfies
\[\sigma < d_{n-1}(S). \]

Further, the uniformity of (V') can be defined as follows:

(V'\#) There is an integer \(n \) such that \(\dim_n X = n \) for \(x \in X \), and for each number \(\delta > 0 \) there exists a number \(\sigma > 0 \) such that if \(A, B \subseteq X \) are closed sets satisfying
\[d_n(A) > \delta < d_n(B), \]
then every closed separator \(S \) of \(X \) between \(A \) and \(B \) satisfies
\[\sigma < d_{n-1}(S). \]

At last, a fourth class of Cantorion manifolds is determined by a sharpening of condition (V') to the following one, which has been suggested by a result due to Sitnikov (compare [1], p. 74):

(V'\#) There is an integer \(n \) such that \(\dim_n X = n \) for \(x \in X \), and if \(A, B \subseteq X \) are closed sets satisfying
\[\dim A \geq m \leq \dim B, \]
then there exists a number \(\sigma > 0 \) such that every closed separator \(S \) of \(X \) between \(A \) and \(B \) satisfies
\[\sigma < d_{m-1}(S) \text{ or } \sigma < d_m(S) \]
for \(m = n \) or \(n < m \), respectively.

Condition (V') implies Alexandroff's condition (W), which is formulated in a different manner (Hindem). The question whether these two conditions are equivalent for compacta in general, seems to be open.

As above in the case of condition (V'), compacta for which condition (V'\#) uniformly holds are the following:

(V'\#\#) There is an integer \(n \) such that \(\dim_n X = n \) for \(x \in X \), and for each number \(\delta > 0 \) there exists a number \(\sigma > 0 \) such that if \(A, B \subseteq X \) are closed sets satisfying
\[d_n(A) > \delta < d_n(B), \]
then every closed separator \(S \) of \(X \) between \(A \) and \(B \) satisfies
\[\sigma < d_{n-1}(S) \text{ or } \sigma < d_n(S) \]
for \(m = n \) or \(m < n \), respectively.

Finally, let us remark that the compacta \(X \) for which conditions (V') or (V) uniformly hold (with respect to the diameters of massive spheres contained in \(A \) and \(B \), for instance) are actually the same for which conditions (V') or (V) ordinarily hold, respectively. Thus neither the uniformity of (V') nor that of (V) constitutes a new property.

§ 2. Separators in locally connected compacta. Let \(A_1, A_2, \ldots \) be subsets of a compactum \(X \). The symbols \(\text{Li}A_1, \text{La}A_1, \text{Lim}A_1 \), which we use in the sequel denote the topological limits of the sequence of sets \(A_i \) in \(X \) when the subscript index \(i \) tends to the infinity (see [4], p. 241-245).

2.3. Let \(X \) be a locally connected compactum. If \(A_i, B_i \subseteq X \) and \(S_i \subseteq X \) is a separator of \(X \) between \(A_i \) and \(B_i \) for \(i = 1, 2, \ldots \), then \(\text{La}S_i \) is a separator of \(X \) between \(\text{Li}A_i - \text{La}S_i \) and \(\text{La}B_i - \text{La}S_i \).

Proof. Denote by \(M \) the union of all the components of \(X - \text{La}S_i \) which intersect \(\text{Li}A_i \), and by \(N \) the union of all the remaining components of \(X - \text{La}S_i \). Then \(X - \text{La}S_i = M \cup N \) and \(\text{Li}A_i - \text{La}S_i \subseteq M \). Since every component of \(X - \text{La}S_i \) is an open set (see [4], p. 243 and [5], p. 163), \(M \) and \(N \) are disjoint open sets. Hence \(M \cap N = 0 \).
To prove that $L_0 S_i = L_1 S_i \subset N$, suppose on the contrary that there is a point $q \in L_0 S_i = L_1 S_i$ such that $q \in X - N$. Thus there exists an infinite sequence of points q_i satisfying $q_i \in B_{k_i}$ for $i = 1, 2, \ldots$, $\lim_{n \to \infty} k_i = \infty$ and $\lim_{n \to \infty} k_i = q$. Moreover, we have $q \in M$ and so we can find a component C of $X - L_0 S_i$ which contains the point q and a point $p \in L_0 S_i$. Consequently, there exists an infinite sequence of points q_i satisfying $q_i \in B_{k_i}$ for $i = 1, 2, \ldots$ and $\lim_{n \to \infty} k_i = p$. The space X being locally connected, let us take closed connected neighbourhoods U and V of points p and q, respectively, such that $U \cap C$ and $V \cap C$. Since the set C is connected and open in X, there is an arc $L_0 C$ which joins p and q. The union $K = U \cup L_0 C$ is therefore a continuum, which contains both points p and q for a sufficiently large i. It follows that the set S_i meets the continuum K for a sufficiently large i, and we conclude by the equality $\lim_{n \to \infty} k_i = \infty$ that the sets $L_0 S_i$ and K intersect, which is impossible because $K \cap C \subset X - L_0 S_i$. This completes the proof of 2.1.

It is clear that the locally connected continuum considered in §1 (see fig. 1) admits irreducible closed separators with arbitrarily large number of components. However, this continuum is not $L_0 C$, i.e. locally connected in dimensions 0 and 1 (see [5], p. 506).

2.2. If X is an L_0^0 compactum, then there exists an integer m such that every irreducible closed separator of X between two points consists of at most m components.

Proof. Using Eilenberg's notation, put $m = r(X) + 1$ (see [2], p. 153). Since X is an L_0^0, $r(X)$ is finite (see [2], p. 175 and [3], p. 117). If S is an irreducible closed separator of X between two points, then there is a component C of $X - S$ such that $U = \partial C = S$ (see [5], p. 175). Hence $X = U \cup (X - C)$ is a decomposition of X into continua (ibidem, pp. 88, 163 and 175) whose common part is S. This shows that the number m satisfies 2.2.

§ 3. Existence of finite separators

If a space is cut by a finite set F, the cutting F fulfills the condition $d_i(F) < \varepsilon$ for every $\varepsilon > 0$. With the restriction to L_0^0 compacta the inverse holds too.

3.1. Let X be a L_0^0 compactum. If $A_i, B_i \subset X$ are connected sets and $S_i \subset X$ is a separator of X between A_i and B_i satisfying

\[d_i(S_i) < 1/\varepsilon \quad \text{for} \quad i = 1, 2, \ldots \]

then there exists an infinite sequence of integers $k_1 < k_2 < \ldots$ and a finite set F such that

\[F \subset L_0 S_{k_i} \]

and F is a separator of X between $L_0 A_i$ and $L_0 B_i$.

Proof. The space X being locally connected, the separator S_i contains an irreducible closed separator I_i of X between A_i and B_i for $i = 1, 2, \ldots$ (see [5], p. 97 and 176). Let $k_1 < k_2 < \ldots$ be such a sequence of integers that the sequence I_{k_1}, I_{k_2}, \ldots is convergent, and put $E = \lim_{n \to \infty} I_{k_i}$ (ibidem, p. 21). Thus $F \subset L_0 S_{k_i}$. Since $d_i(S_{k_i}) = d_i(S_{k_0}) < 1/\varepsilon$, for $i = 1, 2, \ldots$, the diameters of components of I_{k_i} converge to zero when i tends to the infinity. It follows from 2.2 that the set F is finite. The last assertion from 3.1 is a consequence of 2.1 because $F = L_{k_i}$.

3.2. Let X be an L_0^0 compactum. If $A, B \subset X$ are connected sets and $S_i \subset X$ is a separator of X between A and B satisfying (*), then there exists a finite separator $F \subset L_0 S_i$ of X between $A - F$ and $B - F$.

Proof. Putting $A_i = A$ and $B_i = B$ for $i = 1, 2, \ldots$, it is sufficient to apply 3.1.

Note that conditions (U) and (V) (see §1) can be understood to hold for each space X. Similarly, conditions (U') and (V') are always equivalent. Of course, conditions (U) and (V) are not equivalent in general (see fig. 1).

3.3. If X is an L_0^0 compactum, then conditions (U') and (V') are equivalent.

Proof. Clearly, (V') implies (U'). Suppose (V') is not true. Then there are such closed subsets $A, B \subset X$ containing interior points that there exists, for every $i = 1, 2, \ldots$, a closed separator S_i of X between A and B satisfying (*). If at least one of the sets A and B contains only degenerate continua, a massive sphere contained in it is 0-dimensional (see [5], p. 130), whence the space X is not connected, and so (U') is not true. If both sets A and B contain non-degenerate continua, any A' and B', respectively, it follows from 3.2 that there is a finite separator F of X between $A' - F$ and $B' - F$, and there are points $p \in A' - F$ and $q \in B' - F$. The 0-dimensional set F is thus a separator of X between sufficiently small closed neighbourhoods of p and q, which means that (U') is not true, and 3.3 is proved.

3.4. If a 2-dimensional Cantor-type manifold is an ANR-set (or only L_0^0), it is a Cantor-type manifold in the stronger sense.

This directly follows from 3.3.

3.5. If X is an L_0^0 compactum and $\dim X \leq 2$, then all conditions (U), (V), (V'), (V''), and (V'''), are equivalent.

Proof. Evidently, condition (U) is implied by and condition (V'') implies each of the others. It is enough to show that (U) implies (V'').

Suppose (V'') does not hold and denote $n = \dim X$. If $\dim X < n$ for any $x \in X$, condition (U) does not hold. We can thus assume that $\dim X = n$ for every $x \in X$. Consequently, there exist a number $\delta > 0$, an integer $m \leq n$, closed sets $A_i, B_i \subset X$, and closed separators R_i of X.
between A_i and B_i ($i = 1, 2, \ldots$) such that

\begin{align*}
(\ast) & \quad d_m(A_i) > \delta < d_m(B_i), \\
(\ast\ast) & \quad 1 > \frac{d_m(A_i)}{d_m(B_i)} \quad \text{if} \quad m = n, \\
(\ast\ast\ast) & \quad \frac{d_m(A_i)}{d_m(B_i)} \quad \text{if} \quad m < n,
\end{align*}

for $i = 1, 2, \ldots$. Then $n = 1$ or 2. If $n = 1$, the degree $d_m(S_i)$ is finite by (\ast\ast\ast), so it is zero, which means that the separator S_i is empty while neither the set A_i nor B_i is so, according to (\ast). Therefore (U) does not hold. If $n = 2$ and $m = 0$, (U) does not hold for the same reason.

If $n = 2$ and $m > 0$, we have (\ast\ast\ast) for $m = 1$, the inequality $d_i(Y) \leq d_i(X)$ being always true. Since X is a compactum, we can assume that the sequences A_1, A_2, \ldots and B_1, B_2, \ldots are both convergent (ibidem, p. 64 and 129). Put $\alpha = \text{Lim} A_1$ and $\beta = \text{Lim} B_1$. Inequalities (\ast\ast\ast) for $m = 1$ imply the inequalities $d_i(A) > \delta \leq d_i(B)$ (ibidem, p. 61), whence A and B are infinite sets. Further, (\ast\ast\ast) yields (\ast) and we infer from 3.1 that there exists an infinite sequence of integers $k_1 < k_2 < \ldots$ and a finite separator F of X between $\text{Lim} A_1 - F$ and $\text{Lim} B_1 - F$. But since $A \subset \text{Lim} A_1$ (see [4], p. 243 and 245) and $B \subset \text{Lim} B_1$ (ibidem, p. 244), the sets $\text{Lim} A_1 - F$ and $\text{Lim} B_1 - F$ are not empty. Taking points p and q in these sets, respectively, we see that F is a 0-dimensional separator of X between sufficiently small closed neighbourhoods of p and q. As $m = n = 2$, (U) does not hold, and the proof of 3.5 is completed.

Proof. The theorem is readily reduced to the case where A and B are connected sets. According to the hypotheses concerning O, we can choose an infinite sequence of separators S_1, S_2, \ldots of X such that (\ast) is satisfied and S_i lies in the (i)-neighbourhood of C for $i = 1, 2, \ldots$. Then $L \cap S_i \cap C$ and 3.6 follows from 3.2.

Let us observe that theorem 3.6 fails for A or B consisting of an infinite number of components (see fig. 2).

In the above example the sets A, B, C are closed; however the set C which consists of all cut points, intersects the set B. As the next theorem states, the condition that all the sets A, B, C are closed and the set C does not meet the union $A \cup B$, the hypothesis in 3.6 that A and B consist of finitely many components can be omitted.

3.7. Let X be an LC compactum. If $A, B, C \subset X$ are closed sets such that $A \cap B \cap C = 0$ and, for every number $\epsilon > 0$ and every open set $G \subset X$ containing O, there is a separator $S_i(\epsilon) = \{x \in X : d_i(x) < \epsilon, \text{for} \ i = 1, 2, \ldots\}$, $C \subset X$ with ϵ satisfying $d_i(S) < \epsilon$, then C contains a finite separator of X between A and B.

Proof. First we prove that the union $A \cup B$ is contained in the union of finitely many components of $X - C$. Indeed, suppose on the contrary that there is an infinite sequence of components G_1, G_2, \ldots of $X - C$ which intersect $A \cup B$. Then they are open sets (see [5], p. 153) and have boundaries $\text{Fr}(G_i) \subset \text{Fr}(X - C) \cap C$ for $i = 1, 2, \ldots$ (ibidem, p. 160). Consequently, $L \cap G_1 \subset \text{Fr}(G_1) \subset C$, (ibidem), which gives

$$0 \neq (A \cup B) \setminus G_0 \subset C = (A \cup B) \cap C,$$

contrary to the hypothesis.

Thus there are components G_1, \ldots, G_k of $X - C$ such that $A \cap G_i \neq \emptyset$ and $A \cap G_i \neq \emptyset$ for $i = 1, \ldots, k$. Since $A \setminus G_i \subset C$, the set $A \setminus G_i$ is compact for $i = 1, \ldots, k$. There exist now continua K_i such that $A \setminus G_i \subset K_i$ for $i = 1, \ldots, k$ (ibidem, p. 167). Hence

$$A \cap K = K_1 \cup \ldots \cup K_k \subset X - C, \quad A \setminus K_i \neq \emptyset$$

for $i = 1, \ldots, k$. Similarly, there exist continua $L_i (i = 1, \ldots, l)$ such that

$$B \cap L = L_1 \cup \ldots \cup L_l \subset X - C, \quad B \setminus L_i \neq \emptyset$$

for $i = 1, \ldots, l$. It follows that every closed separator of X between A and B which does not meet the union $K \cup L$ is a separator of X between K and L. The set $X - (K \cup L)$ being open and containing O, the hypotheses of 3.7 hold for K and L instead of A and B, respectively. But the compacta K and L consist of at most k and l components, respectively. Applying 3.6, we obtain a finite separator $F \subset C$ of X between $K \cap F$ and $L \cap F$. Since $A \cap K = K \cap F$ and $B \cap L = L \cap F$, the proof of 3.7 is concluded.
3.8. Let \(X \) be an LC³ compactum. If \(A, B \subseteq X \) are closed sets and \(C \) is a 0-dimensional separator of \(X \) between \(A \) and \(B \), then \(C \) contains a finite separator of \(X \) between \(A \) and \(B \).

This instantly follows from 3.7, if one observes that \(C \) in 3.8 may be assumed to be closed (ibidem, p. 97) and then it has already all the properties of \(S \) required in 3.7.

3.9. Let \(X \) be an LC³ compactum. If \(A, B \subseteq X \) are closed sets and \(C \) is a separator of \(X \) between \(A \) and \(B \) such that \(\operatorname{dim} C \leq 1 \) for \(x \in C \), then \(C \) contains a finite separator of \(X \) between \(A \) and \(B \).

Proof. As previously, we can assume that \(C \) is closed. Take an arbitrary open set \(G \subseteq X \) containing \(C \). Since \(C \) is a separator of \(X \) between \(A \) and \(B \), we have \(C \cap G = (A \cap B) \). Choose a finite cover \(V_1, \ldots, V_j \) of \(C \) composed of open sets \(V_i \) with 0-dimensional (or empty) boundaries and closures \(\overline{V_i} \) contained in \(G - (A \cap B) \). This exists according to the hypothesis on \(C \). Let \(S \) be the union of boundaries of the sets \(V_1, \ldots, V_j \). \(C \) being a separator of \(X \) between \(A \) and \(B \), so is \(S \). Moreover, \(\operatorname{dim} S \leq 0 \), whence \(d_0(S) = 0 \), and 3.9 follows from 3.7.

3.10. If \(X \) is a 1-dimensional ANR-set, then every separator of \(X \) between closed sets contains a finite separator of \(X \) between these sets.

This is an immediate consequence of 3.9, as 1-dimensional LC³ compacta and 1-dimensional ANR-sets coincide (see [5], p. 239).

Remark. If \(X \) is a 1-dimensional ANR-set, \(A \) and \(B \) range over all the subcontinua of \(X \), and \(C \) ranges over all the separators of \(X \) between \(A \) and \(B \), then the minimal number \(m(X; A, B, C) \) of points of \(C \) constituting the finite separator of \(X \) that exists (by 3.10) between \(A \) and \(B \) is bounded by (3.2), i.e. one can find an integer \(m(X) \) satisfying \(m(X; A, B, C) \leq m(X) \) for all continuous \(A \), \(B \) and separators \(C \).

Simple examples show that the connectedness of \(A \) and \(B \) is necessary here.

§ 4. Some 3-dimensional AR-sets. The first of the continuin which are described in this paragraph is the counter-example mentioned at the beginning of the paper.

4.1. There exists a 3-dimensional AR-set that satisfies condition (U) but not (V).

Proof. Let \(P_i \) and \(P_j \) be 3-cells in the 3-dimensional Euclidean space whose common part is a straight segment \(I \) (see fig. 3). Take an arbitrary continuous mapping \(g \) of \(I \) onto the square \(I^2 \) and consider the upper semicontinuous decomposition of the union \(P = P_i \cup P_j \) into the sets \(g^{-1}(y) \), where \(y \in P_i \), and the points belonging to \(P - I \). According to the well known Alexander theorem (compare [5], p. 42), this decomposition induces a continuous mapping \(f \) of \(P \) such that \(f|P-I \)

is a homeomorphism of \(P-I \) onto \(f(P)-f(I) \) and the set \(f(I) \) is homeomorphic to the set \(g(I) = I \), i.e. \(f(I) \) is a 2-cell. Since \(P, I \), and \(f(I) \) are ANR-sets, the image \(X = f(P) \) is also an ANR-set by virtue of the Borsuk theorem (ibidem, p. 264). The ANR-set \(X \) being obviously contractible, it is an AR-set (ibidem, p. 289).

Fig. 3

To prove (U), it is enough to show that no closed subset \(Y \subseteq X \) with dimension \(\dim Y \leq 1 \) is a separator of \(X \). In fact, let \(R_i \) denote the set of interior points of \(P_i \) \((i = 1, 2) \). Since \(f(R_i) \) is a homeomorphism, we have \(\dim f^{-1}(Y) \cap R_i \leq 1 \) and we infer from the Mazurkiewicz theorem (ibidem, p. 343) that \(R_i - f^{-1}(Y) \) is a connected set, dense in \(P_i \), for \(i = 1 \) and 2. Consequently, its image under \(f \) is a connected dense subset of \(f(P_i) \). But the set \(f(I) \) is not empty and lies in the common part of \(f(P_i) \) and \(f(P_j) \). It follows that the union

\[
\left[(R_1 - f^{-1}(Y)) \cup (f(I) - Y) \right] \cup (R_2 - f^{-1}(Y))
\]

is contained in \(X - Y \), is a connected dense subset of \(X \). Thus \(X - Y \) is a connected set.

Now, let \(A \) and \(B \) be closed subsets of \(P \), with interior points, contained in \(P_i - I \) and \(P_j - I \), respectively (see fig. 3). By the continuity of \(f \), for every number \(a > 0 \) there exists a number \(\varepsilon > 0 \) such that \((p, p') \in \varepsilon \) implies \(g(f(p), f(p')) \leq a/2 \). For \(p, p' \in P \), a rectangle \(T \), sufficiently narrow, near but disjoint with \(I \) (see fig. 3), cuts \(P \) between \(A \) and \(B \), and satisfies the inequality \(d_p(T) < \varepsilon \). Then \(f(T) \) is a separator of \(X \) between \(f(A) \) and \(f(B) \), and we have \(d_p(f(T)) < a \), the mapping \(f|T \) being a homeomorphism. Since \(\dim X = 3 \), condition (V) does not hold for the AR-set \(X \), and 4.1 is proved.

4.2. There exists a 3-dimensional AR-set that satisfies condition (V) but not (V).

Proof. Let \(P' \) be a 3-cell and \(I' \) an arc on the boundary of \(P' \). Take a mapping \(g' \) of \(I' \) onto \(P' \). Quite similarly as in the preceding con-
struction (with \(P, I \) and \(g \) replaced by \(P', I' \) and \(g' \), respectively), \(g' \) yields a mapping \(f' \) of \(P' \) such that \(X' = f'(P') \) is a 3-dimensional ANR-set. Every open subset of \(X' \) contains a 3-cell which is the image under \(f' \) of a 3-cell contained in the interior of \(P' \). Consequently, condition (V) holds for the continuum \(X' \) because of the fact that (V) is satisfied by each 3-cell (see [1], p. 71). However, condition (V) does not hold for \(X' \); if one chooses \(A' = f'(I) \) and \(B' \) equal to an arbitrary 3-cell lying in \(f'(P' - I) \).

4.3. There exists a 3-dimensional ANR-set that satisfies condition (V) but not (V').

Proof. The required ANR-set \(X'' \) is a part of the ANR-set \(X \) constructed in 4.1, namely \(X'' = f(P_1) \). It can be verified that for each number \(\delta > 0 \) there exist a number \(\eta > 0 \) and a 3-cell \(Q \), contained in \(f(P_1 - I) \), with the property: if \(Z \subset X'' \) is a closed subset satisfying the inequality \(d_3(Z) < \eta < d_3(Q - Z) \), then \(\eta < d_3(Q - Z) \). We infer that condition (V) holds for \(X'' \), since it holds for each 3-cell (ibidem). Further, taking \(A'' = f(I) \) and \(B'' \) equal to an arbitrary 2-cell contained in \(f(P_1 - I) \), we can find for every number \(\sigma > 0 \) a sufficiently narrow and near \(I \) rectangle \(T \subset P_1 - I \) such that its image \(S = f(T) \) is a separator of \(X'' \) between \(A'' \) and \(B'' \), and we have \(d_3(S) < \sigma \). Consequently, condition (V) fails for \(X'' \) (with \(m = 2 \)), and so proposition 4.3 is shown.

Observe that the above ANR-set \(X'' \) in fact does not satisfy even Alexandroff's condition (W), weaker than condition (V') at first sight (see §1). Really, the separator \(S \) with an arbitrarily small 2-dimensional degree can be found in an arbitrarily tight neighbourhood of \(A'' \).

§ 5. Final remarks. Denoting implications by arrows, we can write down the obvious relations between classes of Cantorian manifolds in the following diagram:

\[
(U) \rightarrow (V) \rightarrow (V') \leftarrow (V')_n
\]

By 3.5, all these implications become equivalences for 2-dimensional \(LC^2 \) compacta. There are easy examples (similar to the example given in §1, fig. 1) of 2-dimensional locally connected continua, thus \(LC^2 \) compacta, for which we should reverse none of the above arrows, respectively.

According to 4.1, 4.2 and 4.3, no horizontal arrow would be reversed for 3-dimensional ANR-sets. The question concerning vertical arrows remains open:

P 419. Do \((V') \) and \((V')_n \) imply \((V)_n \) and \((V')_n \), respectively, for ANR-sets with dimensions \(n = 3, 4, \ldots \)?