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A COUNTABLE BROOM
WHICH CANNOT BE IMBEDDED IN THE PLANE
BY
K. BORSTUK (WARSAW)

By a broom we mean here a curve B (i. e. 1-dimensional continuum)
which is a union of simple ares L,, pe M, with only one common point
a (vertex of the broom). If the set M of indices p is countable, i. e.

B=\UL,, ILpn~L,=1{a} form#n,
n=1
then B is said to be a countable broom. Countable brooms constitute
% subelass of the class of dendroids, i. e. arcwise connected and heredita-
rily acyelic curves, recently investigated by J. Charatonik [1] and A.
Lelek [2].
~ The aim of the present note is to prove the following

TaroREM. There exists a countable broom B which cannot be topolo-
gically imbedded in the Buclidean plane E2.

Proof. Let (»,y,2) denote the point of the Euclidean 3-space E°
with the Cartesian coordinates z,y and z. Let

4 =(0,0,0), a;=(1,0,0), ay=(0,1,0), as=(0,—1,0).

For every n = 2,3, ... let us set
ao = (0,0, —1/n), a;, = (1+1/n, 0, —1/n),
as, = (1+1/n,0,1/n), am = (0,14+1/n, —1/n),
b = (0, 0, —V2/n), b = (1+V2/n, 0, —V2[n),
b = (1+V2/n, 0,V2/n), by = (0, —1—V2/n, —V2/n),

e = (0, 1—!—1/?7/%, —~I/E’_>/'n), oo, = (0, 1—H/§/n, l/g/'n,),
¢ = (0, ~—1—1/§/n, —]/E/n).

Let us denote by pg the segment in B®* with endpoints p, g<£?, and
let us set
Ly, =@, Loy = 00y Loz = B
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and for every n =2,3,...

T e e el

Ly, = a0, a0ty G Gy, G
D T . . =

LZn = ("obInUblu b]w,ublnb(mUbnnb:m,

g ot o= o o=
Lan = @yOop, \sCap Cap '\ Cap Can «

It is easily seen that Ly, Loy, Log, Liny Lon, Lan, 2re simple arcs having
only a, as their common endpoint and that the set

B = LyywLgyoLygo U (Lo Logo L)
N2

is a countable broom. We shall show that B is not homeomorphic to
any subset of the plane K2 First let us observe that

(1) Hm Iy, = Ly L,

(2) lm Ly, = Ly Ly,

(3) Hm Ly, = LoywLy,
N=00

where the limit of sets is taken in the sense of Haugsdorff.

Now let us suppose that there exists a homeomorphism k mapping
B onto a subset of the plane 2, given in E® by the equation z = 0. It
is easy to see that there existis a homeomorphism g of 2 onto itself which
is inverse to h on the set

I= LmULonLo:n

i.e. it satisfies the condition

gh(p) =p for every point pel.

1t follows that replacing h by gh we can agsume at once that
(4) h(p)=0p

Now let us denote by G, to each m = 2,3, ..., the domain in B2
consisting of all points (x, ¥, 0) with 0 <z <1/m and 0 <y < 1—1/m,
or with 0 <o <1-—1/m and 0 <y < 1/m. Manifestly the boundary
of Gy is a union of 6 segments; two of them, which start at the point
(A/m, 1}m, 0}, will be said to be main segments on the boundary of Gim.

Similarly, let us denote by G, the domain in B2 consisting of all
points (z,y, 0) with 0 <o < 1/m and ~1+1/m <y <0, or with 0 <

for every point peT'.

4 COUNTABLE BROOM

o
w
Ot

<o<1l—1/m and —1/m <y < 0. The boundary of G,, is a union
of 6 segments, two of which start at the point (1/m, —1/m, 0). They
will be said to be main segments on the boundary of Gop.

Finally, let us denote by G4, the domain in F? consisting of all points
(z,y,0) with —1/m <2 <0 and —1+1/m <y <1l—1/m. The seg-
ment with endpoints (—1/m, —1+41/m, 0) will be called main segment
on the boundary of Gsp,.

Since the common part of T with each of the arcs L, (¢ =1, 2, 3;
n =2, 3, ...) congists only of the point a,, we infer by (1), {(z) (3) and (4)
that for every m = 2, 3, ... there exists y
an index N (m) such that for every
n > N (m) three following conditions are
saitisfied : -

1° The simple are h(IL,,) containg
a simple are L;,, whose interior is

a;

included in @&, and one endpoint lies Grm
on the segment Gsm Ty o X
62m

(0,1—1/m,0) X/m,1—1/m, 0),

while the other lies on the segment

(1—1/m,0,0) (1—1/m,1/m,0). 3

2° The simple arc h(L,,) contains

a simple arcLy,, whose interior is included in G, and endpoints
lie on the segments

(0, —1+41/m, 0) (1/m, —1+1/m, 0)
and

(t—1/m,0,0) (1—1/m, —1/m,0)
respectively.

3° The simple are h(Ls,) constains as imple arc Lj,, whose interior
is included in Gy, and endpoints lie on the segments

(Os 1——1/7%, 0) (_1/m> 1— 1/m7 0) and (0,—1-[—1/?%, 0)(_1/'”7/; —1+ 1/’”’/’ 0)7
respectively.

Now let L be a simple arc in E® having with 7' only the point a, in
common. It is easily seen that for every sufficiently large index n, there
exists in I a subare L' whose interior lies in one of the domains Gy,
+=1,2 or 3, and joins @, with a point belonging to one of the main
segments on the boundary of @,. It follows, by 1°, 2° and 3°, that for
every n > N(m) the ares I’ and L, c h(L;,) have at least one point
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distinet from a, in common. Consequently for » sufficiently large, the
simple are h(L;,) intersects one of the ares h(Ly), h(Len), A{Ds,), in
a point # a@,. But this iy impossible, because 7 is a homeomorphism
and for » > 2 the arcs Ly, Ly, Lsn, have with the are IL,, only the
point @, = h(a,) in common.

Thus the proof of the theorem is complete.
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ON CANTORIAN MANIFOLDS IN A STRONGER SENSE
BY
A. LELEK (WROCEAW)

Modifying the original definition of Cantorian manifolds, given by
Urysohn in 1925, Alexandroff determined in 1957 (see [1] or § 1 below)
a class of compacta that will be called here Cantorian manifolds in the
stronger sense. The question has recently been raised by Borsuk whether
every Cantorian manifold which is an ANR-set is a Cantorian manifold
in the stronger sense. In the present note we answer this question in the
affirmative for the 2-dimensional case (see §3), and find a 3-dimen-
sional counter-example (see §4). Related topics are also examined.

§ 1. Four kinds of Cantorian manifolds. Roughly speaking, Can-
torian manifolds are compacta whose separators have large dimen-
sions. We recall that a set S is said to be a separator of the space X bet-
ween the sets A and B if there exists a decomposition X —8 = MUN
such that X~AN =0 = M~N, ACM and BCN.

Let X be a compactum, i. e. compact metrie space. Following Ale-
xandroff (see [1], p. 70), for every integer », we consider the condition:

(U") If A, BC X are closed sets containing interior points, then every
closed separator 8 of X between A and B satisfies

n—1 < dim§S.

Evidently, condition (U") is equivalent to the inequality n < deX
(see [5], p. 105). Since one always has dc X < dim X, and the Cantorian
manifolds are characterized by the equality deX = dimX (ibidem),
the following-property (U) of the compactum X is necessary and suffi-
cient for X to be a Cantorian manifold:

(U) Condition (U™) holds for n = dim X .

Since, for compacta §, the inequality n—1 < dimS is equivalent
to the inequality 0 < d,_,(S), where d,(S) denotes the m-dimensio-
nal degree of § (see [5], p. 60), Alexandroff’s modification of condition
(U™ is the following (see [1], p. 70):

(V") If A,BCX are closed sets containing interior poinis, then there
exists a number o >0 such that every closed separator 8 of X between
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