TRANSLATIONS OF INFINITE SUBSETS OF A GROUP

BY

W. R. SCOTT AND LEE M. SONNEBORN (LAWRENCE, KANSAS)

The following problem was proposed by Jan Mycielski [2]:

Let \(R \) be the real axis, \(A = R - B \) and both \(A \) and \(B \) infinite. Does there exist a translation \(\gamma \) such that \(A \sim \gamma B \) is infinite?

This problem was answered affirmatively by P. Lax ([3], p. 646). His solution is contained in Theorem 1, below (\(^1\)). This paper answers the same problem for a wide class of groups, \(G \), including all Abelian groups.

Notation. If \(G \) is a group and \(A \) is a subset of \(G \), \(G(A) \), \(\tilde{A} \) and \(|A| \) will denote, respectively, the subgroup generated by \(A \), the complement of \(A \), and the cardinality of \(A \). \(\varepsilon \) will denote the empty set. \(Z(G) \) is the center of \(G \) and \([G : K] \) is the index of the subgroup \(K \) in \(G \).

Definition. A group, \(G \), is completely regular (resp. regular) if, and only if, for each infinite subset, \(H \), of \(G \) whose complement, \(\tilde{H} \), is also infinite there exists \(x \in G \) such that \(H \cup \tilde{H} \) (resp. \(H \cap \tilde{H} \) or \(x H \cap \tilde{H} \)) is infinite.

Since \(a H = (H - a^{-1})^{-1} \), complete regularity defined in terms of right translations as above is equivalent to complete regularity defined in terms of left translations. Also, since \(x^{-1} H \cap \tilde{H} \) resp. \(H \cap \tilde{H} \) is infinite if and only if \(xH \cap \tilde{H} \) resp. \(H \cap \tilde{H} \) is infinite, the above definitions are symmetric in \(H \) and \(\tilde{H} \). Finally, it is obvious that an Abelian group is regular if and only if it is completely regular.

Lemma. If \(G \) is a group which possesses a subgroup \(K \) satisfying

1) \(K \) is infinite,

2) \(K = G(A) \) for some subset \(A \) such that \(|A| < |G| \),

3) \([G : K] = |G| \),

then \(G \) is regular.

\(^1\) The analogous problem, where infinity is replaced by the cardinality of continuum, is answered in the negative; see Banach [1] and Sierpiński [5], [6]. [Note of the Editor].
Proof. Let G, K and A be as in the hypotheses and H and \bar{H} be infinite subsets of G. We may assume that $A = A^2$.

Case 1. Either $|H| < |G|$ or $|\bar{H}| < |G|$. By symmetry it suffices to consider $|H| < |G|$. Since H is finite, $|H^2| = |H| < |G|$; thus for some $y \in G$, $y \neq H^{-1}$ and $y^k \neq H^{-1}$. Now, if $k \neq H$ and $y \neq H^{-1}$ then $y = y^k \neq H^{-1}$, which is false. Thus $yH \cap H = \emptyset$ and $yH \cap \bar{H} = \emptyset$, which is infinite.

Case 2. $|H| = |\bar{H}| = |G|$. Let $(a \beta | \bar{e} B)$ be a set of representatives for the cosets $(aK | \bar{e} K \cdot G)$. Let $B_1 = \{\beta | \bar{e} B_1 = a \bar{K} \cap H \neq \emptyset \}$ and $B_2 = \{\beta | \bar{e} B_2 = \bar{K} \cap \bar{H} \neq \emptyset \}$.

A. $|B_1| = |G|$. Now for each $\beta \in B_1$ there are $y_\beta, y_\beta', \bar{e} \beta K$ such that $y_\beta H = y_\beta' H$ and $y_\beta' H$ and y_β' can be selected in such a way that $y_\beta = y_\beta \bar{e} \delta_1$ for some $\delta_1 \in A$; and in fact, they are unique. Thus $\alpha \bar{K} H \cap \bar{H}$ is infinite. Hence, we may assume that $H = \{\bar{e} \delta_1 \bar{e} K \cap H \}$ and that G is not regular. If both H and \bar{H} contain arbitrarily large or arbitrarily small powers of x, $xH \cap \bar{H}$ is infinite, so we may also assume that one of H, \bar{H} contains all sufficiently large powers of z and the other all sufficiently small powers of z. We assume $H = \{\bar{e} \delta_1 m > m_0 \}$ and $\bar{H} = \{\bar{e} \delta_1 m < m_1 \}$. Since $\bar{e} \delta_1 \bar{e} K \cap H$ is finite, for some $\bar{e} \delta_1 \bar{e} K \cap \bar{H}$ is finite and $\{\bar{e} \delta_1 \bar{e} K \cap \bar{H} \}$ is infinite.

Now, $H^2 = \{\bar{e} \delta_1 \bar{e} K \cap \bar{H} \}$ and $\bar{H}^2 = \{\bar{e} \delta_1 \bar{e} K \cap H \}$, and since $|B_1| < |G|$, $H \cap \bar{H}$ is infinite for some $\beta \in B_1$. Then $\bar{e} \delta \bar{e} \delta_1 \bar{e} K \cap \bar{H}^2$ is infinite.

Theorem 1. Every uncountable group is regular.

Proof. Let G be uncountable and let A be a countable subset of G and let $K = G(A)$. Since K is countable and $[G : K] = |G|$ the lemma applies.

Theorem 2. If G is countable and contains a finitely-generated infinite subgroup of infinite index, then G is regular.

Theorem 3. If G is countable and contains an element x, of infinite order and if $G : [G : \bar{e} x]$ is finite, then

1) $\bar{e} x \bar{e} xG \cap G = \{e\}$, G is regular but not completely regular, and

2) if $\bar{e} x \bar{e} xG \cap G = \{e\}$, G is not regular.

Proof. Since $G : [G : \bar{e} x]$ is finite, there is an element $y \in G \cdot \bar{e} x$ such that $y \neq G$ is normal in G. Furthermore, $[G : \bar{e} x(\bar{e} x)]$ is finite, and $Z(G) \cdot \bar{e} x \bar{e} x = \{e\}$ if and only if $Z(G) \cdot \bar{e} x(\bar{e} x) = \{e\}$ (see [4] p. 83-84). Hence, there is no loss in generality in assuming $G(x)$ is normal. Let r_1, r_2, \ldots, r_n be a set of representatives for the cosets of $G(x)$ in G.

Now, $r_i \bar{e} x \bar{e} x = x$ or $r_i \bar{e} x \bar{e} x = x^{-1}$, for $i = 1, 2, \ldots, n$. Let $H = \{r_i \bar{e} x \bar{e} x \mid i = 1, 2, \ldots, n \}$ and $\bar{H} = \{r_i \bar{e} x \bar{e} x \mid i = 1, 2, \ldots, n \}$. Then, $H \cap \bar{H} = \emptyset$, $H = \{r_i \bar{e} x \bar{e} x \mid i = 1, 2, \ldots, n \}$ and $\bar{H} = \{r_i \bar{e} x \bar{e} x \mid i = 1, 2, \ldots, n \}$.

REFERENCES

COMMENTS ON SOME WALLACE'S PROBLEMS ON TOPOLOGICAL SEMIGROUPS

by

P. S. MOSTERT (NEW ORLEANS, LA.)

In [20] Wallace lists nine problems on topological semigroups (P 326-334). This note is intended to review the present status of this latest set, and to indicate directions in which the author feels some of the more interesting might take. I shall state each problem and follow it with my comments. In the following, semigroup will always mean topological semigroup (i.e., a Hausdorff space with a continuous associative multiplication). We shall use S to denote the semigroup, B its set of idempotents, and E its kernel (minimal ideal) when it exists.

P 326. Is it possible to construct a semigroup on the closed n-cell, $n \geq 2$, such that E is the boundary?

Comments on P 326. The answer is still far from known, although in the case $n = 2$, a number of results have been obtained, mostly by participants in a seminar of R. J. Koch's during the past year. For example, one can easily show that every element of S has a square root, and from this one obtains (using the methods of A. Lester Hudson [8]) that every element lies on an I-semigroup with end points on the boundary. Further properties can be established using these subsemigroups. Again, in [6] it is shown that the boundary of S cannot be a subsemigroup, for this implies the existence of idempotents in the interior.

P 327. Is it possible to construct a continuous associative multiplication on an n-sphere in such a way that (i) every element is the product of two elements, (ii) there is a zero element.

Comments on P 327. It is generally conjectured that there is no non-trivial semigroup on a sphere X with $X^2 = X$ except the groups on S^1 and S^3. In dimension 1, this was proved by Koch and Wallace [11]. If there exists a structure with non-trivial multiplication (i.e., not such that $xy = x$ or $xy = y$ for $x, y \in X$ such that $X^2 = X$, one can show that there exists one with zero, so that the problem is mere general than it appears. It has been shown by Mostert and Shields [16] that if $X = S^1$ has a non-trivial connected subgroup, then $X^2 \neq X$. Wallace's genera-