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RELATIONS BETWEEN NETS AND INDEXED FILTER BASES*
BY
R. G. BARTLE (TRBANA, ILL.)

In a preceding note [1], the present writer indicated a relation be-
tween the convergence theories of nets and filter bases and showed how
these theories can be used simultaneously (see also [2, 3, 4, 5]). It was
seen that nets generate unique filter bases in a natural way and that
filter bases generate (non-unique) nets. A cruecial construction was to
show that a refinement of the filter base generated by a net gives rise to
a subnet of the given nebt. Recently, Professor Albert Wilansky pointed
out to the author that our construction fails if the original net is suffi-
ciently degenerate. It is not difficult to present & new construction which
corrects this error within the framework of the original note. However,
we prefer to supply here a different construction which has the advan-
tuge of associating a unigue net from a filter base. We also introduce
@ notion of equivalence for nets, which is finer than that employed by
Smiley [6], in such a way that the operations of forming “indexed” fil-
ter bases from nets and nets from indexed filter bases are inverse opera-
tions (fo within equivalence).

Preliminaries. We recall that a net in a set X is a mapping « of
a non-empty directed set 4 into X and that a net f: B — X isa subnet
of a: A — X in case there exists a mapping n: B - A4 with f =caom
and satisfying the requirement that for each a, in A there is a b, in B
such that if b > by, then =(b) = a,. If § is a subnet of a, we shall write
a < f. Further, we shall say that two nets a, § are equivalent and write
a ~ B in case each is a subnet of the other (it being easily verified that
this is an equivalence relation). It will be noted that this relation of
equivalence between nets differs from that introduced by Smiley [6].
‘We shall see later that if two nets are equivalent in our sense, then they
are equivalent in his sense, but not conversely.

* This note was written while the author was partially supported by the Natio-
nal Science Foundation, U. 8. A., and on sabbatical leave from the University of Ilinois
in residence at the University of California, Berkeley.
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A filter base & in a set X is a non-empty collection of non-empty
subsets of X with the property that the intersection of every pair of
sets in & contains a set in #. A filter # in X is a filter base in X which
contains all supersets. If one adjoins all supersets to a filter base %, one
obtains a unique filter, called the filler generated by #. If o, # are filber
bases in X, we say that & is a refinement of o/ and write & < & in case
every element of o/ contains some element of Z. Two filter bases «/, %
are equivalent if each is a refinement of the other in which case we write
o ~ B, If F, % are the filters generated by the filter bases <7, 4, then
o < #if and only if # < ¥ which holds if and only if the inclusion# < ¢
holds. Hence, two filters are equivalent if and only if they are equal.

Tt is not conventional to require the elements of a filter base to be
indexed, but we shall find it convenient to do so. In fact, by an indezed
filier base in X we understand a mapping & of a non-empty directed set
B into the set of non-empty subsets of X such that if b <b’, then £(b) 2
o Z(b'). It is plain that every filter base % forms an indexed filter base
in a natural way: the elements of the directed set B are the sets in &
ordered by inclusion o and the map # is the identity mapping. It is
also clear that there are many other ways a filter base can be indexed.
Clearly, an indexed filter base is a special kind of net in the power set
2(X); alternatively, a filter base is merely the range of an indexed filter
base. We shall use the same definition for refinement and equivalence of
indexed filter bases as for ordinary filter bases. It is emphasized that if
o < &, then it need not be the case that, considered as nets in &(X),
& is a subnet of &7; indeed, the range of # need not be contained in the
range of 7. :

Henceforth it will be assumed that all filter bases are indexed, since
this can always be attained. Nevertheless, we shall not drop the modi-
fier “indexed?”, so that the reader will be reminded of this requirement.

The generation of nets and indexed filter bases. Let a: 4 — X
be a net, let acd, and let B, = {a(t) : te4d, « <1}. Then it is readily seen
that the map a — B, of A into #(X) is an indexed filter bage. This inde-
xed filter base is called the indexed filter base generated by the net a and will
be denoted by B(a). We note that the domains of ¢ and B(a) are the
same directed set A.

1. PROPOSITION. Let a, f be nets in X.

(i) If @ < B, then B(a) <B(f).

(ii) If a ~ 8, then B{a) ~B(f).

The proof of this remark is very simple and will be omitted. It fol-
lows from (ii) that our definition of equivalence of nets implies Smiley’s,
gince in effect he defines two nets to be equivalent if and only if the
generated filter bases are equivalent.
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The reader should see that the converse of (i) does not hold, in gene-
ral, since there is no reason that the range of 8 be contained in the range
of a. Even when this is the case there may be no suitable mapping of
B into A. For example, let 4 be the directed set of natural numbers and
a(n) = (—1)" and let B = {1} and g(1) = 1. Then B(a) < B(f), while
B is not a subnet of «, even though the range of f is contained in the
range of a.

If o: A —#(X) is an indexed filter base, then the set {(z, a):
e (a), aeAl} is a directed set under the ordering (z, a) < (#', a') if and
only if & < a’. The mapping which sends (#, a) into # is & net in X and is
said to be the net N(«Z) generated by /. Note that although the domain
of & and N(«) are not the same, they are closely related.

The inversion relation. We shall now show that, up to equivalence,
the operations B and N are inverses of each other.

2. ProposITION. (i) Let o7 be an indexed filter base in X, then &£ ~
~ B(N(«)).

(ii) Let a be a net in X, then a ~ N(B(a)).

Proof. (i) Let «7: A — X, then the net f§ = N(&) is a mapping of
a directed set of pairs (¢, a) with zexZ(a), aeA and such that f(z, a) = =.
The value of the mapping B(f) = B(N(«)) at a point (2, a) is the set
{y: (y,1) = (x, a)} which can readily be seen to be the set o7 (a). Thus,
the range of B(N(#7)) is the same as the range of &7 so that these indexed
filter bases are equivalent. (However, the domains of these functions
are not the same; indeed, one is an “inflated” wversion of the other.)

(ii) If a: A — X, the value of B(a) at the point ¢ in 4 is the se
B, = {a(t): te4d, a <t}. The domain of § = N(B(a)) consists of pairs
of the form (z, a) with z in E, and the value of the net g at such a pair
is its first coordinate. Now, if z¢¥#,, then there exigts an element £ in A
with ¢ > a and = a(f). Applying the axiom of choice, we infer the
existence of a mapping #» on such pairs into the set A such that =(x, a) =
=1>a and 2 = a(t). Therefore we have

B(w,a) =2 = a(t) = ao n(w, a).

Further, if a is a given element of A, the pair (a(a), a) has the property
that when (a(a), a) < (2', @) (that is, when a < o), then it follows thatb
w(z'ya’) > a’ > a. This shows that g = N(B(a)) is a subnet of e.

Conversely, the mapping =’ defined on A by #'(a) = (a(a), a), can
be used to show that a is a subnet of . This shows that o is equivalent
to N(B(a)).

The subnet relation. The reader may readily show that if % is a refi-
nement of «, then it is not necessarily the case that N(#) is a subnet
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of N(), for the range of N(#) need not be subset of the range of N(«)
However, it is the case that there is & net y which is & subnet of N(s)
such that & ~ B(y). In fact, we can choose y to be & subnet of N(Z).

3. PROPOSITION. If #: B — X is a refinement of o/: A — X, then
there is @ met y which is a subnet both of N(&7) and N(%) end such that B ~
~ B(y).

Proof. Congider the set O of all triples (z, b, a) where x e % (b) < ./ (a)
and order C by

(#,b,a) <(2',b,a) if and only if b <) and o <a'.

It is easily seen that with this ordering, C is a directed set. If we define
v by y(z, b, @) = «, then y is a net on € to X. Defining = by = (2, b, a) =
= (&, a), it may be proved that y is a subnet of N(s). In a similar way
one shows that p is a subnet of N(Z).

‘We shall now show that € = B(y) is equivalent to 4. In fact, a ty-
pical element of % is specified by (%, b, ¢) with <2 (b) < o (a) and is the
seb

{@': (2,0, 0) < (2,0, 07}

It is readily verified that this set coincides with #(b). In other words,
% is the collection of all sets in %, it is trivial that ¥ < #. Conversely,
let A, be a fixed set in o since o/ < &, there is a set B, in # such that
By < 4,. Now let Be#; since & is a filter base there is an element B,
of # contained in BnB, < 4,. Therefore B; Dbelongs to %, showing
that ¢ is a refinement of # and completing the proof.

‘We now present a substitute for Proposition 2.5 of [1].

4. PrROPOSITION. Let a: A - X be a net and let & be a refinement
of B(a). Then there exists a subnet B of o such that B ~ B(f).

Proof. By Proposition 3, there is & subnet f of N(B(a)) such that
# ~ B(f). According to Proposition 2, a ~ N(B(a)), so that g is also
2 subnet of a.

The next result is a partial dual to Proposition 1 (i) and follows
directly from Proposition 3.

5. PROPOSITION. Let o7, & be indexed filter bases in X. If & < &,
then there is an indexed filter base B’ which is equivalent to & and such that
N(&Z) < N(#).

Let o and # be indexed filter bases which are compositive (cf. [6],
p. 336) in the sense that if aed, beB, then & (a)~#(b) 5 9. Then
order ¢ = A XB by (a,b) < {(a',b") if and only if a <a’ and b <V,
so that C is a directed set and the map %: 0 - X defined by ¥(a,d) =
= (a)~Z (D) is an indexed filter base. It is quite clear that & <%
and # < %. It follows from Proposition 4 that if o is a net and # is an
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idexed filter base which is compositive with &/ = B(e) in the sense defi-
ned above, then there is a subnet y of a such that B(y) is equivalent to
the indexed filter base ¥ constructed above. This construction is Smi-
ley’s version of the fundamental lemma on subnets, due to J. L. Kelley
[4], p. 278.
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