160 M. KWAPISZ

REFERENCES

- [1] M. Kwapisz, O zmodyfikowanej metodzie kolejnych przybliżeń Picarda rozwiązywania zwyczajnych równań różniczkowych liniowych rzędu n, Zeszyty Naukowe Politechniki Gdańskiej 20, Łączność III (1960), p. 31-48.
- [2] Solution of linear systems of differential equations by the use of the method of successive approximations, Annales Polonici Mathematici 10 (1961), p. 309-322.
- [3] Д. К. Фаддеев и В. Н. Фаддеева, Вычислительные методы линейной алгебры, Москва 1950.

Reçu par la Rédaction le 13.11.1961

COLLOQUIUM MATHEMATICUM

VOL. X

1963

FASC. 1

A REMARK ON A PROBLEM OF M. KRZYŻAŃSKI CONCERNING SECOND ORDER PARABOLIC EQUATIONS

BY

P. BESALA (GDAŃSK)

Consider the linear second order equation of parabolic type

(1)
$$Fu \equiv \sum_{i,j=1}^{m} a_{ij}(x,t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{j=1}^{m} b_{j}(x,t) \frac{\partial u}{\partial x_{j}} + c(x,t)u - \frac{\partial u}{\partial t} = 0,$$

where $x = (x_1, ..., x_m)$ varies in the whole *m*-dimensional Euclidean space E^m and 0 < t < T. Denote by D^T the topological product of E^m with the interval (0, T).

By a solution of (1) is meant a function u(x,t), which is continuous in the closure $\overline{D^T}$ of D^T and which has continuous partial derivatives $\partial u/\partial x_i$, $\partial^2 u/\partial x_i \partial x_j$, $\partial u/\partial t$ in D^T satisfying (1).

Let u(x,t) be a solution of (1) satisfying the initial condition

(2)
$$u(x,0) = \varphi(x) \quad \text{for} \quad x \in E^m.$$

 $\varphi(x)$ being a given continuous function. Assume that there exist positive constants M, K such that the solution fulfils the inequality

$$(3) \hspace{1cm} u\left(x,\,t\right) \,\geqslant\, -M\exp\left(K\,|x|^{\,2}\right) \hspace{0.5cm} \text{for} \hspace{0.5cm} \left(x,\,t\right)\epsilon\,D^{T},$$

where $|x| = (\sum_{i=1}^n x_i^2)^{1/2}$. Krzyżański's problem is whether the condition (3) is sufficient for equation (1) to have at most one solution satisfying (2). It is known that, for instance, the condition

$$|u(x,t)| \leqslant M \exp(K|x|^2), \quad (x,t) \in D^T,$$

is sufficient if certain growth conditions concerning the coefficients are fulfilled (see [2]).

In the case when $\varphi(x) \equiv 0$ a positive answer can be obtained from the below mentioned theorems. Using the fundamental solution constructed by Dressel, Friedman [1] has proved the following

Colloquium Mathematicum X.

THEOREM I. If the following conditions hold:

1° there is a positive constant L such that for all $(x, t) \in D^T$ and for every real vector (ξ_1, \ldots, ξ_m)

$$\sum_{i,j=1}^m a_{ij}(x,t)\,\xi_i\,\xi_j\geqslant L\sum_{i=1}^m\xi_i^2;$$

2° the functions

$$a_{ij}$$
, $\frac{\partial a_{ij}}{\partial x_{\lambda}}$, $\frac{\partial^2 a_{ij}}{\partial x_{\lambda} \partial x_{\mu}}$, $\frac{\partial a_{ij}}{\partial t}$, b_i , $\frac{\partial b_i}{\partial x_{\lambda}}$, c

are locally Hölder-continuous and bounded in $\overline{D^T}$;

 3° the solution u(x,t) of (1) is non-negative in the strip D^{T} , then the condition

$$(5) u(x,0) = 0 for x \in E^m$$

yields $u(x,t) \equiv 0$ in D^T .

The next theorem constitutes a certain generalization of a theorem established by Krzyżański [2].

THEOREM II. If the following conditions hold:

1° the quadratic form

$$\sum_{i,j=1}^m a_{ij}(x\,,\,t)\, \xi_i\, \xi_j$$

is positive definite for $(x, t) \in D^T$,

 2° there exist positive constants A_0, \ldots, A_4 , such that

$$|a_{ij}(x,t)| \leq A_0, \quad |b_i(x,t)| \leq A_1 |x| + A_2, \quad c(x,t) \leq A_3 |x|^2 + A_4,$$

3° the condition (3) is satisfied,

then the inequality $u(x,0) \geqslant 0$, $x \in E^m$, implies $u(x,t) \geqslant 0$ in $\overline{D^T}$ (1).

The proof of this theorem is a slight modification of the proof of the theorem of M. Krzyżański. Namely, we make use of some properties of the function

$$H(x,t;k) = \exp\left\{\frac{k|x|^2}{1-\mu(k)t} + r(k)t\right\}, \quad k > K.$$

In the papers [2], [3] it has been shown that, for a given k, the constants $\mu(k)$, $\nu(k)$ appearing in this function can be chosen so that the relation $FH \leq -NH$ holds for every point (x,t) contained in a sufficiently narrow strip D^h $(h < 1/\mu(k))$, N being an arbitrary positive

number. It is sufficient to prove the theorem for the domain D^h , because if T > h, then a well known change of the variable t permits to prove it for the whole strip D^T .

The substitution

(6)
$$u(x,t) = v(x,t)H(x,t;k), \quad (x,t) \in D^h,$$

transforms (1) into

(7)
$$\sum_{i,j=1}^{m} a_{ij}(x,t) \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{m} \overline{b}_{j}(x,t) \frac{\partial v}{\partial x_{j}} + \overline{c}(x,t) v - \frac{\partial v}{\partial t} = 0,$$

with $\bar{c}(x,t) = FH/H \leq -N < 0$.

Now, let $(\overline{x}, \overline{t})$ be an arbitrary fixed point contained in $\overline{D^h}$. We shall show that $u(\overline{x}, \overline{t}) \geqslant 0$. For this purpose let us choose an arbitrary increasing sequence $\{R_n\}$, $R_n > |\overline{x}|$, $R_n > \infty$ as $n \to \infty$. By D_n^h we denote the part of D^h lying inside the cylindrical surface Γ_n with the equation $|x| = R_n$, whereas by σ_n^h we denote the part of the surface Γ_n contained in D^h . By virtue of assumption 3° and transformation (6) we obtain, for $(x, t) \in \sigma_n^h$,

$$|v(x, t)| \ge -rac{M \exp{(K|x|^2)}}{\exp{\left\{rac{k|x|^2}{1-\mu(k)t}+v(k)t
ight\}}} = -rac{M \exp{(KR_n^2)}}{\exp{\left\{rac{kR_n^2}{1-\mu(k)t}+v(k)t
ight\}}}.$$

Hence it follows that for every $\varepsilon>0$ there exists an integer $n_0(\varepsilon)$ such that for $n>n_0$ the inequality

$$(8) v(x,t) > -\varepsilon$$

holds for $(x,t) \in \sigma_n^h$. This inequality, by our assumption, is also satisfied on the part of the boundary of D_n^h lying on the hyperplane t=0. Therefore, by the principle of minimum, the inequality (8) is satisfied for $(x,t) \in \overline{D_n^h}$. In particular we have $v(\overline{x},\overline{t}) > -\varepsilon$, for every $\varepsilon > 0$. This means that $v(\overline{x},\overline{t}) \geqslant 0$, and thereby $u(\overline{x},\overline{t}) \geqslant 0$, q. e. d.

From theorem II it follows that the theorem I will be true if instead of the assumption that $u(x,t) \ge 0$, the condition (3) is adopted. This gives a positive solution of Krzyżański's problem in the particular case when $\varphi(x) \equiv 0$ and under the assumptions of theorem I concerning the coefficients.

Note that if a function u(x,t) fulfils equation (1), then so does the function $\overline{u}(x,t) \stackrel{\text{df}}{=} -u(x,t)$. If, now, the assumptions 1° and 2° of theorem I are satisfied, then condition (5) and

$$u(x, t) \leqslant M \exp(K|x|^2), \quad (x, t) \in D^T,$$

imply $u(x,t) \equiv 0$ in the strip D^T .

⁽¹⁾ In the paper of M. Krzyżański instead of (3) the stronger condition (4) is assumed.

164

P. BESALA

Friedman [1] has proved that if there exists a constant $K_{\rm 0}>0$ such that

$$\int\limits_{0}^{T}\int\limits_{E^{m}}\exp\left(-K_{0}|x|^{2}\right)|u\left(x,\,t\right)|\,dt\,dx<\,+\,\infty$$

and if the initial condition (5) is satisfied, then $u(x,t)\equiv 0$ (under the assumptions 1° and 2° of theorem I concerning the coefficients). Write

$$u^{+}(x,t) = \begin{cases} u(x,t), & \text{if } u(x,t) \geq 0, \\ 0, & \text{if } u(x,t) < 0. \end{cases}$$

There exists a supposition that the condition

$$\int\limits_{0}^{T} \int\limits_{E^{m}} \exp{(\,-K_{0}|x|^{2})} \, u^{\,+}(x,\,t) \, dt \, dx < \, + \infty$$

is sufficient in order to make the solution u(x, t) of equation (1), satisfying (5), vanish identically in D^{T} .

REFERENCES

- [1] A. Friedman, On the uniqueness of the Cauchy problem for parabolic equations, American Journal of Mathematics 81 (1959), p. 503-511.
- [2] M. Krzyżański, Certaines inégalités relatives aux solutions de l'équation parabolique linéaire normale, Bulletin de l'Académie Polonaise des Sciences, Série des sciences math. astr. et phys. 7 (1959), p. 131-135.
- [3] Sur les solutions de l'équation linéaire du type parabolique déterminées par les conditions initiales, Annales de la Société Polonaise de Mathématique 18 (1945), p. 145-156.

Reçu par la Rédaction le 11. 10. 1961

COLLOQUIUM MATHEMATICUM

VOL. X

196

ASC.

EVALUATIONS OF SOLUTIONS OF A SECOND ORDER PARABOLIC EQUATION

BY

P. BESALA (GDAŃSK)

Let us consider the equation

(1)
$$\Delta u - \frac{\partial u}{\partial t} + c(x, t)u = 0$$
, where $\Delta = \sum_{i=1}^{m} \frac{\partial^2}{\partial x_i}, x = (x_1, \dots, x_m).$

The following theorem has been established by Krzyżański [4]:

THEOREM K. Assume the coefficient c(x,t) to be defined and continuous when x varies in the m-dimensional Euclidean space E^m , t>0, and to satisfy the Lipschitz's condition with respect to x. Suppose there exist constants a, β , A, B; $\alpha>0$, A>0, B>0, such that $a^2|x|^2+\beta\leqslant c(x,t)$ $\leqslant A|x|^2+B$ for $x\in E^m$, t>0, where $|x|=(\sum_{i=1}^m x_i^2)^{1/2}$. If a solution u(x,t) of equation (1) satisfies the condition $u(x,0)\geqslant N>0$ for $x\in E^m$ and belongs to the so-called class E_2 , then

$$u\left(x,\,t
ight)\geqslant M\exp\left(K\,|x|^2 an2lpha t
ight) \quad \ for \quad \ x\,\epsilon\,E^m,\,\,t\,\epsilonigg(0\,,rac{\pi}{4lpha}igg),$$

M, K, being positive constants.

In the proof the author mentioned above has applied a fundamental solution, constructed in [7], which requires certain assumptions concerning a regularity of coefficients.

In this note we prove similar theorems for a more general equation of the form

(2)
$$Fu \equiv \sum_{i,j=1}^{m} a_{ij}(x,t) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}} + \sum_{j=1}^{m} b_{j}(x,t) \frac{\partial u}{\partial x_{j}} + c(x,t)u - \frac{\partial u}{\partial t} = f(x,t)$$

by means of a method which does not use the fundamental solution. A quasi-linear equation will also be discussed.

The author is indebted to Professor M. Krzyżański for valuable remarks concerning this paper.