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Expressing (6) in terms of (7) and adding (5) and (6) we obtain the
equations of an are of I as given in (1). Since © in (7) is @ strictly mono-
tonic function of t, the tangent of I’ coinciding with the tangent of I'
varies in a monotonic manner and therefore I’ is convex.

The extremal funetions corresponding to the boundary I" have the
form (1) with suitably chosen », & (|7 = [¢] = 1). Tor t = (1—r2)"* we
have = = 1, and then the imaginary part of w on I" attaing ity maximal
value

1—92 . — .
T +2arccosl/1-r2 = 2(aretans -+ aresing)
p

and this gives the Theorem 2. The bound is sharp and is attained for
functions of the form (1).

arecos
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INTEGRATION OF THE FIRST ORDER PARTIAL DIFFERENTIAL
INEQUALITY WITH DISTRIBUTIONS

BY

W. MLAK (CRACOW)

In the present paper we are interested i i i
- in the ‘ i

quality he integration of the ine-

ou - ou

T < Zaj(t)fi'—.z'j +b(t)u

3

Whe.re uis a distl.'ibution on a suitably chosen space. We use in our consid-
era.tlons a Foungr transform which maps the above inequality into
a simpler one which can be easily solved.

1. In notations and formulas we follow here [1] and [2]. By K we
denote the space of complex-valued functions ¢(z,,...,,) of class ™
?.nd compact supports, with the usual topology. The Fourier image of K
is the space Z: the elements of Z are defined by

(1) P(0) = [ple)e ™z = F(g)
B
. . n
with geK. As usually (@, 0) = Yu;0:, o; Teal, @ = (v, ..., 1,).
; ©i
The Fourier transform of a distribution fe K’ is defined by formula

(f; F((P)) = (2717)"‘(]:7 ®).

Moreover, for differentiation we have

(f—? é’) = ((—i%})f, §)

5 = (—ig)f.
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Let geZ. A function (o) is a multiplier in 7 it apeZ for peZ.
Let a(c) be a multiplier. The product ag, where geZ’ iy defined by

formula
(3) (ag, @) = (9, a®).

In this sense o = —io; is a multiplier in formula (2). Remark now
that every function a(ic) (see [1], p. 128-130) which is analytic and

satisfies
la(ic)] < C (14 |0™)e"

for some m > 0, b = 0 is a multiplier in Z. Take now the function
n
(4) alo) = cxp i gww 7

with real y;, y. We have [a(s)] = e

Tence, every funetion of form (4) is a multiplier in Z.

We now briefly diseuss positive distributions. First the definition:
the distribution feK' is ealled positive, f >0, it (f,p) 20 for ¢ >0,
peK. It is known (see [2]) that a necessary and sufficient eondition
for f to be positive is that (f, ¢g) = 0 for every peK. Using the Fourier
transform we can say that f > 0 is equivalent to (f, [lp(u)[? ¢®*du) > 0
for every peK (for details see [2], p. 207-208). We write then f > 0.

2, We can now prove the following lemma:
LEemMA. Suppose that f = 0. Then G =fexp(—i£‘y,-njﬂ|- y) =0 for
real y;, v. "
Proof. The function exp(i%::'yy- o;-y) is a multiplier in Z. Hence
J

the distribution

n
@ = fexp(—i Y vo5+)
71
ig well defined. In order to show that G > 0 one must show that
4 = (G,fl:p(u)!“e"““'“)du) >0, gekK.

We have by formula (3)

4= (6, [ ptseeman) = [Foxp (=i Dnerts), [1poideran]
in

= [f, f | (20)]2 € - exp (i j yi 0+ y)]
m
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Hence

n

4= [f, e”f lg(Uyy -y 1) |2eXD (iZ(u;+yi)u,-}du,...du”].

n

But

3”f [ CTE T LTS ) (iZ(uf}- yj)aj)durl...clun
i

- oo
= eyj 197(71_7’17 sevy 7n—)’n)l?‘exp (iZTij)d‘fln 'dfny
. I3 v

and consequently

A= (1 [lwped®du), 5 = (r1,..., ),

where y(u) = ¢ p(u—y). But f> 0. Hence 4 >0, q.e. d.

In the sequel we write f <g if 0 <g—f and f,geK"

The spatial derivatives are taken in distribution sense. We shall
prove the following theorem:

TH'EOREM. Let the real valued functions a;(3), j =1,...,n, and b(1)
be continuous for t = 0. Suppose we are given a distribution-valued function
w(t)e K', weakly differentiable in t, which satisfies

- ou = ou

5 - () —

(3) - <;a,(t) 5, FOO
for t >0 and

(6) %(0) < 0.

Under our assumptions the inequality w(f) <0 holds for t > 0.

Proof. Let
Eﬂ o
—_ a,(t)%—b(t)u,

ilL 4

ou
R(t) = —

-1
~—

R(t) is a negative distribution. By (2) and (7) we have

die L . R N
ARG A LICUIORRAOLIORS 10
i

n

= {i l—ma)+ew}im+Ro.

7l
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Hence
t n

(8) w(t) = exp f[@z —oj0(

il

)+ 0( ]dr}& (0)-

[ t )
-|_fR(7] oxp{f[zz(—a,a, () }«b(r)J 'dv;.
0 7 i
Onﬂwoﬂwrhmmﬂm)\OamlRw)<0ﬁmdﬂmfmwmm1ﬂhn;@
= exp{f[z (-cr, a;(v))+ b(v)|dv} is a multiplier in Z for fixed ¢ and .
Hence, by our lemma, £(4,7;0)%(0) <0 and £(Z,n;0)R(n) <0 for
i
n < 3. Obviously ff(t, n; o) B ( ydn < 0. Hence both parts of the right-
0

hand member of (8) are negative, q. e. d.
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SOME REMARKS ON A CERTAIN METHOD OF SUCCESSIVE
APPROXIMATIONS 1IN DIFFERENTIAL BEQUATIONS
BY
M. KWAPISZ (GDANSK)

In papers [1] and [2] a method of successive approximations in dif-
ferential equations was discussed. Some sufficient conditions for the con-
vergence of iteration process were given. These conditions were obtained
by reducing the problem to the solving of a system of Volterra’s equa-
tions by successive approximations method. In the present paper we
shall give some remarks which allow to weaken the assumption of theo-
rems formulated in [1] and [2].

1. Let us consider Volterra’s integral equation of the form
(1) r(t) = A

+fB(t £)x(£)dE+£(1),

where matrices 4 (¢), B(t, &) are continuous for ¢ > 0, and ¢t > 0, 0
respectively; vector function f(f) is continunous for t > 0.

Definition 1. Let ||| be an arbitrary norm of the vector

<E<CY

&,

mﬂ/;
i. e. a non-negative number satisfying conditions:
a) [lz]| >0, for & = 0 and |0 = 0,
b) llex|| = e|-llzll, ¢ — an arbitrary real mumber,

) N+l < ol -yl -
Definition 2. Let ||4]| = max|ldx| be the norm. of matrix 4 (see
llzfj =1

3], p.124-127).
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