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great |p/qx| we have |P(p;/qx)| = M s |Pr/gr™ With a suitable positive M,.
It follows that the left side of (3) is at least

k(3 m

T

lpk‘ k
but the right side of (3) is bounded, and so we infer that m =0, 1 and
a fortiori » = 0, 1, which means that F(¢) is a homography. In the case
n > m the proof is almost the same, as can be easily seen from. the sym-
metry of (1). We proved thus that if # # oo, F(z) # 0, co and s(z) is
sufficiently great, then s(F(m)) > s(z). But in all remaining cases s(x)
is bounded by a constant. Consequently if F(t) is not a homography the
condition (ii) of lemma 1 is verified, which completes the proof of the

theorem.
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ON THE DERIVATIVE OF CLOSE-TO-CONVEYX FUNCTIONS
BY

J. KRZYZ (LUBLIN)

Let D be a simply connected domain of hyperboliec type, i. e. a do-
main conformally equivalent to an open eircle. Then the following de-
tinitions of close-to-convexity of D may be considered.

(B): D is said to be close-to-convex, or accessible from outside along
rays [1], if the complement of D can be represented as a union of closed
rays which do not cross each other.

(K): D is said to be close-to-conver, if for the function f(z) mapping D
conformally onto the unit circle K = {2: |2| < 1} a univalent and convex
function @(z), zeK, can be chosen so that R{f (2)/P'(2)} >0 for any
zeK (see [2]).

As pointed out by Lewandowski [3], both definitions of close-to-
-eonvexity are equivalent.

For a domain D bounded by a Jordan curve I" with a continuously
changing tangent another equivalent definition of close-to-convexity
was given in [2].

(X,): D is said to be close-to-convex, if the maximal angle of a clock-
wise rotation of the outward normal along any subare of I' deseribed
in the positive (counter-clockwise) direction does not surpass =. There-
fore we can also consider close-to-convex curves. .

In particular, the clags (L) of univalent funections f(z) = z+ 6,2%24-...
mapping K onto close-to-convex domains, i. e. the class of ¢lose-to-con-
vex functions (introduced independently by Biernacki [1] and Kaplan
[2]), may be considered. The class (L) contains functions such as convex,
starlike, convex in one direetion [5], starlike with respect to symmetric
points [6], functions with the derivative of positive real part ete.

In [1], which does not seem to be universally known, Biernacki
determined the region of variability of the funetionals {z/f(2)}, {2f’ (2)/f(2)},
for a fixed z¢K and f ranging over (). In this article we solve an analog-
ous problem for logf’(2) (Theorem 1), and hence we deduce the precise
estimates of argf’(z) for fe(L) (Theorem 2). In spite -of the fact that the
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class (L) is rather important, this problem has remained unnoticed to
the best of the author’s knowledge. We have the following

TarorEM 1. Let f(2) = 2+ a,22+... be a function reqular and close-
to-convex in the unit circle K. Then the set of possible values u-+w of
logf' (ré®) for fized r and 6 (0 <7 <1, 0 real) is a conves domain D(r)
symmeiric with respect to the real owis Ou and with respect to the line
w = logl/(1—72). The boundary of D(r) arises by reflecting the convex

are I': .
e (s REd
% = logt ltz— 1= + 11t 1 4 y

1—p2 [ 1 ]2}1/2

D = &TCOOS*‘J‘:.l_—rZ*{l—I- t—m -+

1412(1—77)
2t

(1)

@ <t < (-1

-+ 2arccos y

with respect to the awes of symmetry.
The functions corresponding to the boundary of D(r) have the
form

1 14
2) fz) = 6{(1——77—5; 1—a ac
with suitably chosen e, 5, where le| = |n| = 1.

As a corollary of Theorem 1, we obtain the

TaEoREM 2. Let f(2) = 844,92 +... be o function regular and close-
to-convex in the unit circle K. We have

(8) largf’ (re®)] < 2(arosinr+aretanr) (0 <r <1, 0 real)
with the sign - of equality only for functions of the form (2) with suitably
chosen ¢, 7.

Tn both thoorems we consgider principal branches of logarithm and

argumont changing continuously from the initial values logl = argl = 0.

Proof of Theorem 1. If fe(L), so is 6°f(2¢™™) with arbitrary

real 6. Henee the set of values of f'(¢), fe(L), 2¢K being fixed, is identical

with the set of values of f'(z¢~*), and therefore we may confine ourselves

to real, positive z. According to the definition (K) and a well-known
Ed

relation between convex and starlike functions, we have f(2) = [¢7f*(¢) X
0

X p(£)dt, where f*(2) = #-+A,2%+... is a function regular in K and
starlike with respect to the origin, and p(s) = 1-+¢;2--... is regular
and of positive real part in K. Since f* and p may be chosen independently
of each other, we have log f'(r) = w;+w,, Where w,, w; range over the
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sets Dy (r), Dy(r) of variablitily of log (r~'f*(r)) and logp(r) respeetively
Now, aceording to Marx [4] the variability region of (r“‘}"‘(a‘)}”2 is the;
closed dise ¢, with the diameter [(1+7)~%, (1—»)"'] and the functions I
corresponding to thé boundary of ¢, have the form 2(1—n2)~? with
7l = 1. Tt is & well-known consequence of Herglotz’s struetural formula
for funetions with the positive real part that the domain of variability
of p(r) for a fixed r, 0 < r < 1, is the closed dise C, with the diameter
[(X—r)(1+7)7" (147r)(1—7)7"], and the funetions p(z) corresponding
to the boundary of C, have the form (1+z)(1—ez)”" with |¢] = 1. Now
}f C" is @ closed dise in the (z)-plane with the diameter [, b] O<a< b)’
its image by logz in the (w)-plane (w = u-+1iv) is a convex domain witl;
the boundary

=1
) U ogt,
12+ ab

? = Farccos
t(a+b)

(@ <t <b),

symmetricf with respect to the real axis and the line u = }logab, sinee
1112_: ab implies }(u,+ u,) = §logad, and v(t,) = Fo(t,). Therefore the
regions D, (r), Dy(r) of variability of log (r~'f*(r)) and logp (r) are convex
symmetric domains with boundaries I'y, I's:

5) u; = 2logt,

v, = Z2arecos 3 (171 +1(1—12)),
(l+r)_1 <t < (1___7.)—1,

uy = logz,

1—1'2( 1)
1+ i =z
=) (141" <7 <A+ (1—r)",

I’y being symmetric with respect to both axes Ou, Ov.

Now, D(r) = {w: w = w4+ wy}, With w, e D, (), wyeD,(7), and hence
D(r) may be obtained as the envelope of D,(r) whose centre is describ-
ing without rotation the curve I';. If w is the point of the envelope such
that w = w,(§)+w,(r), the tangent of the envelope at w, the tangent
of I'} at w,(t), and the tangent of I', at w,(r), are parallel. This implies
the equality

(6)

Uy = arecos

23

- 1 1 2)1/2
( =t e —

" T +{1+[ t(1~r2)]}
for (1—r3) 7' <t < (1—7)7"%
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Expressing (6) in terms of (7) and adding (5) and (6) we obtain the
equations of an are of I as given in (1). Since © in (7) is @ strictly mono-
tonic function of t, the tangent of I’ coinciding with the tangent of I'
varies in a monotonic manner and therefore I’ is convex.

The extremal funetions corresponding to the boundary I" have the
form (1) with suitably chosen », & (|7 = [¢] = 1). Tor t = (1—r2)"* we
have = = 1, and then the imaginary part of w on I" attaing ity maximal
value

1—92 . — .
T +2arccosl/1-r2 = 2(aretans -+ aresing)
p

and this gives the Theorem 2. The bound is sharp and is attained for
functions of the form (1).

arecos
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In the present paper we are interested i i i
- in the ‘ i

quality he integration of the ine-

ou - ou

T < Zaj(t)fi'—.z'j +b(t)u

3

Whe.re uis a distl.'ibution on a suitably chosen space. We use in our consid-
era.tlons a Foungr transform which maps the above inequality into
a simpler one which can be easily solved.

1. In notations and formulas we follow here [1] and [2]. By K we
denote the space of complex-valued functions ¢(z,,...,,) of class ™
?.nd compact supports, with the usual topology. The Fourier image of K
is the space Z: the elements of Z are defined by

(1) P(0) = [ple)e ™z = F(g)
B
. . n
with geK. As usually (@, 0) = Yu;0:, o; Teal, @ = (v, ..., 1,).
; ©i
The Fourier transform of a distribution fe K’ is defined by formula

(f; F((P)) = (2717)"‘(]:7 ®).

Moreover, for differentiation we have

(f—? é’) = ((—i%})f, §)

5 = (—ig)f.
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