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G. SZASZ (SZEGED)

In this paper we shall apply to lattices and semilattices the general
notion of independence introduced by Marczewski in [2].

1. Definitions. Following Birkhoff [1], by an algebra o = (4;
{f,}yer) we mean a set A of clements with a class F = {f,}yer of (s0 called)
fundamental operations, each f, being supposed to be an A-valued funetion
of finite variables defined on 4. Further, the class F™ of algebraic opera-
tions of n variables on o is defined as the smallest class of functions
satisfying the following two conditions:

(i) F™ contains all selector operations si (k = 1,...,n) of n varia-
Dles defined by the formulas

SN (@ y vy ) = g, (Bry oeny Byed);

(i) IE fyy ...y fre P and f is a fundamental operation of » variables,
then the operation ¢ defined by

glaey, ooy ay) = f(fl (s oy )y ey Frltny ooy ‘/I"’IL)) (@1, o) Byed)
also belongs to IO,

The single selector operation of one variable will be called identity
operation of 4 and denoted briefly by s instead of s,

A subset 8 of A will be called M-independent in o (see [2]) if S has
the following property: Given any algebraic operations g and h of »
variables on ., if theve exist different elements a,, ..., @, in § snch that

gltgy ey wn) == Ry ey ),
tihen
.(/("UH ey ‘IEWL) = 7]:(.’!3“ ey m’/u)

for each sequence @, ...,#, of A. In the contrary case we say that 8
is M-dependent. Tt is easily seen that each subset of an M-independent
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set is, a fortiori, M-independent and, convergely, cach subset of 4 con-
taining an 1-dependent subset of A is itself M-dependent.

In particular, an element a of 4 is called self-dependent if the one-
element set {a} iy M-dependent in ..

2. M-independence in lattices. By the lattices operations we mean
(as usual) the operations which form the joins and the meets, respectively.
(For the lattice-theoretical terminology, see [1]). In this section we sup-
pose that no further fundamental operation is defined on the lattices
in question. Aceordingly, a lattice & defined on the set I will be denotoed
by (L5 ~y o)

. The lattice operations being idempotent, the single algebraic oper-
ation of one variable on a lattice (L; ~, ) is the identity operator
of L. Consequently:

TurOREM 1. In o lattice (L; ~, o) there is no self-dependent element.

Further, it is easy to see that in a lattice (L; ~, ) there are exactly
four algebraic operations of two variables: the lattice operations ~
U, and the selector operations s{”, s{. Using this fact, we prove

TuporEM 2. If {a), as} is a totally unordered (1) subset of the lattice
& = (L; ~, ), then it is M-independent in 2.

Indeed, if a; and a, are incomparable, then a, % @y and @, ~ 4y
<a;<ayu, (J=1,2) or, in other terms,

s (ay, ay) # 889 (ay, ay),

and.

G~y < s8N ay, @) < ayoay  (§=1,9).
Hence, {a,, a,} is M-independent in £.
For a subset § of L with § >2 the statement of Theorem 2 does
not hold any more (2). For example, the subset {byy Dy, by} of the lattico
; given by the diagram on the left is totally unovderad
g and .
[)1 /\U)Z w b:i) = 3(13)(1)1, 1)2, b“),

without that this equation be identically frne. In fact,

e (8s w ay) # s ay, uy, ay).

Thus the subset {b,, by, by} is M-dependent.

() A subset S of a lattice is called totally wnordered it the clements of N are
pairwise incomparable.
() 8§ denotes the power of S.
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The preceding example shows that the property of being totally
unordered does not imply M-independence in general. We prove that
the econverse implication is always true. More generally:

THEOREM 3. If S (79—'22) is an M-independent subset of a latlice
(Ls ~y ), then for each subset {a,,...,a,} (n=2) of 8

(1) Gy v ..ou@nonza, (k=2,..,n),
and
(2) @y~ oo~ apnon <a, (B=2,...,n).

CorOLLARY 1. Hach M-independent subset of a lattice is totally wn-
ordered.

COROLLARY 2. No M-independent subset of o lattice & conitains either
the yreatest or the least element of Z.

COROLLARY 3. Let & be a lattice with the least element. If 8 is am
M-independent subset of atoms of &L, then S<o.

Proof. We prove Theorem 3 by indirect way. Suppose

Gy een w Qp_y = Ay
for some & (2 <k << n). Then we have
By w eew Ggt) A = a = 8P (ay, ..., az).
On the other hand, the equation
(B ov U Bpy) Ay = sg‘)(ml, oy Bg)

does not hold identically, for if we take &, = ... = a_, < @, then
we get

.
(B0 e O py) A By =@y a = 8 (B, ..., @),

Jonsequently, {ay,...,a,} would be M-dependent, in contradiction
to the fact that it is a subset of the M-independent set S.

By the dual arguments, the negation of (2) leads to a contradietion.
Thus Theorem 3 iy proved.

Sinee a; = ay, resp. ap < ay, with § <k, implies a fortiori

By Oy oo O Gy 220 Te8p. Gy oo NG e Uy X Oy

It

Corollary 1 follows immediately from (1) and (2). Corollary 2 is a direct
consequence of Corollary 1.

Finally, it P = {p,, ps, Ps, ...} i8 9 set of different atoms and o
denoties the least eloment of &, then p; ~ p, = 0 < py, that is, P does
not satisfy (2). Thus, by Theorem 3, P is pat M-independens. )
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The usual notion of independence concerning lattices with dimengion
funetion will be called here L-independence (3). The lattice given by the
diagram above ghows that L-independence does not imply M-independerce
and conversely. In fact, the subset {a;, a,, a;} of this lattice is L-indepen-
dent, but by the Corollary 3 to Theorem. 3 it is not M-independent; con-
versely, the subset {b,, b,} is, by Theorem 2, M-independent without
being L-independent.

3. M-independence in lattices with unique complements. Lot
£ = (L; ~, v) be a lattice with greatest and least elements in which
every element # has a unique complement z’. We consider the comple-
mentation as a third fundamental operation on .Z and therefore we write
&= (L; ~y, v,y ).

THEEOREM 4. The least and the greatest elements of a lattice & == (L
~yuy ) (L= 2) are self-dependent but no further element of £ is self-
dependent.

Proof. It is easy to see that the different algebraic operations of
one variable on .% are: the identity operation s(#) = », the complemen-
tation operation ¢(x) = x’ and the constant operations

(weL),

where 0 and 4 denote the least and the greatest element of %, respectively.
By the assuraption L > 2, s(x) # c(w), and ¢,(z) # ¢y(z), fo1 all » in L.
Hence, Theorem. 4 follows by the facts that s(z) = ¢,(2) or ¢(z) = ¢,(ir)
if and only if # = o0 and s(#) = ¢,(»), or ¢(s) = ¢,(x) if and only if » = ;.

TE:EOREM 5. If @ and b are elements of a laitice & = (L; ~, v, )
such that o’ and b are comparable, then the set {a, b} is M-dependent in L.

By the lattice theoretical duality it is sufficient to consider the casoe
a’'<b. Bubt then o' v b =0 =sP(a’,b) and o' wy %o, y) in gen-
eral. (Take, for example, © =1y = 7).

Remark. Theorem 5 shows that, in general, the statement of Theo-
rem 2 does not hold if we consider the complementation as a third funda-
mental operation. In faet, if T > 2, then we can find an element b in [,
different from o and i; 1f we take now @ = b’, then &' = b too, and so
@, b are incomparable elements, whereas {a, b} is M-dependent by Theo-
rem, 5.

It may be asked whether the following converse of Theorem, 5 holds:
It o and b are elements of a lattice & = (L; ~, v, ') such that neither «
and b, nor o’ and b, nor « and ¥’, nor ¢’ and b’ are comparable, then {a, b}
is M- mdependent in & (P 387). We call the attention of the reader o
the faect (see [1], p. 171) that a lattice & = (L; ~y v, ') 18 either digtri-

@) =2~ =0, ¢@)=z0a =1

) B‘or the definition of this notion, see [1], p. 104.
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butive or non-modular. In the case of distributivity, i. e. if £ is a Boolean
algebra, the considered econverse is obviously true (e. g. in view of theorem
4 (i) of [3], p. 140).

‘4. M-dependence in semilattices. Let & = (8; ~) be a semilattice
and let @ <b (a,be8) mean a ~ b = a. Using this partial ordering we
give, a complete characterization for M-dependence in semilattices.

TEHEOREM 6 (*). Let & = (8; ~) be a semilattice and T o subset of S.
Then T 4s M-dependent in & if and only if there ewist different elements
@y onny G @0 T such that

(3) A e N Ay K Gy

COROLLARY. Hach M-independent subset of a semilattice is totally
unordered.
Proof. Since the fundamental operation of & is idempotent, the
algebraic operations of n variables on % are the operations
T @y oy 3) =@y A

where (i, ..., 1,) is a ﬁxed p-tuple of integers with 1 <4, < .
Moreover, if S =2 and

~ &
ip?

<y <.

1<i,<...

(Gyy oey B) 7 (Juy ovvy ) <y <m; 1< <. <jy <0,
then
(4) H i ERD L

In order to prove this assertion, eonsulel an integer s (1 <s < g¢)

such that j; #4;,...,1, and take, for example,

2y o= ...

X =xip = @,

By == m=E, ==y, =0, @ o=b<a

(the existence of an element b with the property b < a follows easily by
the assumption § > 2). Then .
T (@ and  ffY (@, ..

which proves (4). .
onsequently, if T is an M-dependent subset in &, then there exist
different elements b,, ..., b, in § such that

./:11,),_._,1 ’)17 i n f,l(vll,...,‘ "'7bn)$

Imn) =a ,"1’”) = b’

[),; Noaee N biv == bfl [aREEEaY Z))-q with (’i“

1ip) # (J1s++e5 Ja)

(%) The proposition (iii) on p. 143 of [3] is a special case of Theorem 6, where
& in the clags of all subsets of a et
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Let s (1 <s <gq) be chosen so that j, # Ay onyfy. Then by differs

from the elements b, ..., bip and

bilf“-'- ~ biTJ ébfs'

Hence, taking p =r—1, a =b, (1< E<<r—1) and @ =10,
we find (3) satisfied. _

Conversely, suppose that there exist elements a,,...; 4, in I'( C N)
such that (3) holds. Then

fl(f),.,,r(au ey ) =f£t)...,r~l(a’1; ey @)

Since this equation does not hold identically, 7' is M -dependent.
Thus Theorem 6 and its Corollary are proved.
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CONCERNING THE INDEPENDENCE IN LATTICES
BY

E. MARCZEWSBSKI (WROCLAW)

The independence is meant here in the sense of [2] and [3]. The
results presented here complete the paper [4] by Szé,sz,'jn particular
Theorem 1 is a strengthening of Theorem 3 of [4].

Nevertheless, the knowledge of Szész’ paper is not necessary for the
reader of this note.

The proof of Theorem 1 is a modification of Szasz’ proof, made by
J. Plonka.

1. Let us consider a lattice (L; u, ~).

TuroreM 1. If I is a set of independent elements of L, then

(i) @y~ oo~ @y nOD by ULl U b, for each sequence a, ..., an,,
biy ooy by (m =1, n =1) of different elements of L ().

Proof. Let us suppose

m n
Na<U b
=1 =1
where @, ..., @, b1, ..., 0, i8 2 sequence of different elements of L.
Hence
m n n
(%) Na; v Ub; = Ub;.
f=1 7=1 J=1

Let us consider the following algebraic operations in L (= lattice
polynomials):
n n

Flery ooy @y Yas ooy Yu) = ﬂwf - U?/v’;
=1 i

and

. e
G@yy oony @y Yay ooy Y) = U5
=1

(1) The condition (i) for sets has been formulated by Tarski [5], p. 61. In this
case (i) is equivalent to a condition treated in [3], p. 141, theorem (iii).
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