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ON 4 CLASS OF ARITHMETICAL CONVOLUTIONS
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W. NARKIEWICZ (WROCLAW)

1. Let us associate with every natural number » a set 4, of divizors
of the number ». We c¢an now define with the aid of the formula

& woy = Nriara(y)

dedp

a convolution f* g = h of two arithmetical functions. In the case when
A, is the set of all divisors of the number n, (1) defines the classical Di-
richlet convolution, and in the ease, when A, is the set of all unitary di-
visors of the number n, i.e. 4, = {d: (d, n/d) = 1}, (1) defines the uni-
tary econvolution introduced by Cohen ([2], [3]). The set of all complex-
valued arithmetical functions with ordinary addition, and with multi-
plication defined by (1) forms a ring R, in general non-assoeiative and
non-commutative.

In this paper we shall be concerned with a class of convolutions which
preserve multiplicativity, and for which the ring B, is commutative,
associative, and has a unit element. Moreover, the inverse function of
f(n) =1 shall assume for prime powers only the values 0 and —1. (The
last condition in the case of Dirichlet and unitary convolution is a well-
known property of the function of Mobius resp. of Liouville). If a con-
volution has the above listed properties we shall say it is a regular com-
volution.

First we establish the conditions which should be imposed wupon
the sets A, to get the associativity, commutativity, and some other pro-
perties of the ring R, . We shall prove a theorem characterizing the regular
convolutions, and we shall show that some results of E. Cohen, regarding
the unitary convolution can be proved in more general cases also.

Finally we shall examine the subring B, of R, consisting of all

)

tunctions f(n) satistying [fj = 3 |f(n)] < co. It turns out that B, is
n=1

a normed algebra; we shall identzfy the maximal ideals of B, and shall
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solve the problem of homeomorphism of the spaces Qf ma.xil.n.al ifiea,]s
belonging to different B.,. As an easy corollary we obtain that, in unitary

convolution, if f]f(n)] < oo, f(1) # 0, and g(n) is the inverse funetion
N=1

to f(n), then g‘ lg(n)] < oo.

2. (i) The“;@l‘ng R, is associative if and only if the following two con-
ditions are equivalent:

() dedy, med,,

(b) dedy;mlded,,. )

Proof. Let us define, for k =1,2,...,

1 it
it oo~k

w=k,
ep(in) =

Then, for all f, f(n) =k2f(k)0k('n/).
=1
From (1) it follows that

(f*g)*h= Z % Zf(k)g(l)h(m) [(e; * €7) * €],
k=1 l=1 m=1
Frlgrn =23 SFk)gl)h(m)le (6% n)];

I 1 m=1

¥
-~
I

hence the econvolution will be associative if and only if (e * ¢) * €,
= ¢, * (¢, * 6,,) for every Fk,l,m. An easy computation shows that
[(ex * &) * ep](n) =1 if n = Kklm, kedy, kled,, and iz equal to zero in
the remaining cases. Similarly, [e; * (e * e,)](n) =1 if n = klm, ked,,
ledy,, and is equal to zero in the remaining cages. By putting now
d' =k, m =kl,n' = klm, we obtain the required equivalence.

(ii) The ring B, is commutative if and only if from ded, it follors
that njdeA,,.

Proof. The sufficiency is evident. If B, is commutative and there
exists a pair d, n, such that de4,, but n/d¢4,, then

1=1(eg* gn/d)('"’) = (@n,'d *eg)(n) =0,

a contradietion.
(il) The ring B 4 has a unit element if and only if for every n, {1, n} C A4,.
Proof. If {1,2}C A4,, then ¢ *f=7f*e; =f for all f; hence ¢,
ig the unit element. Suppose now that B4 has a unit element I, and there
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exists an integer k, such that %¢4,. Then 1 = e (k) = (e * 1) (k)
D e()1(k/d) = 0, a contradiction. Similarly, if 1¢4,, then
dedy

1=ex(k) = (1*e)(k) = YU e(k/d) = 0,
dedy
a eontradiction. '

It should be remarked that if B, has a unit element [, then I = e¢,.
Moreover, the set of elements which have the inverse in R4 is the same
for all B, with a unit element, namely it is the set of all funetions f(n)
non-vanishing at n = 1. This is easy to establish, for if f has an inverse i
thenl = (f * f~1)(1) = f(1)f'(1), and so f(1) 5 0. Conversely, if f(1) # 0

2
then we can define f~'(n) by induction:

PO =1 = — o S ).
F) £ -
d>1
As usually, we shall say that a function f(n)=£0 is multiplicative
it fimm) = f(m)f(n) for (m,n) = 1. We shall say that the convolution
is multiplicative if from the multiplicativity of the factors follows the
multiplicativity of the convolution produect.
(iv) The convolution defined by (1) is multiplicative if and only if
Amn = A XA, fO?‘ (m1 n) = 1.
(Here BxC denotes the set of all integers, which can be represented
in the form be, beB, ceC).
Proof. If f and ¢ are multiplicative functions, (m,n) =1, A
= -Am,XAn: and & :f*g’ then

mn

himn) = > fd)g(mnjd) = D Fld)f (@) gmidy)g(n/ds)

dedpp Ayl

dldgglgmn
= D f@)gimla)- > flds)g(n/ds) = him)h(n).
dyedy, Ayedy

Convergely, let (m,n) =1 and for all multiplicative functions
fy 9, h(mn) = h(m)h(n), where h =fxg If we define d(z) = a* * 1,
then d(mn) = dy(m)d;(n) for all %; hence

(@Dy*

dedy, Dedy,

(2) 2 & = dumn) = dy(m)dy(n) =

Aedyy,

. o
S S
ady.dy
@y edpy, dyedy,

Bedpyx Ay
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for from (m,n) =1 it follows that the products 4D (AeA,, Ded,) are
all different.

Let now

Ay = {dl <dp <. < dr}y

As dy(z) = jm, we have r = 7r,.

Trom (2) we obtain:

A Al = SO

for kt=1,2,... It now A,, # 4. X Ay, then let ¢ be tho greatest index
such that d; # 6. If d; < 6;, then

Ay x Ay = {0, < 8, < ...

< 6,).

N1
oot o = A <dedf and (J) > >0

But this is impossible, if & is sufficiently large. The case d; > 4;
can be dealt with in the same way. The obtained contradiction shows
that Ay, = Ay X4a.

. FrZ)nl;l (iv) it follows that if A, = A,x 4, for (m,n) =1, then the
multiplicative functions form a semigroup with respect tp the convolu-
tion. In the case of unitary convolution this has been noticed by Cohen
([3], th.2.1). We shall now prove .

(v) If the ring R, is associative, has o unit element, and the multipli-
cative funetions form a semigroup, then they form a group.

Proof. It is sufficient to prove that if f is multiplicative, then f~*
is also multiplicative. (The existence of f~' follows from the fact that
f(1) =1, and from the remark after (iii)). Evidently f (1) = L. Sup})ose
that for 7 < kfrom r = 7,74, (v, 72) = Lit follows that £~ (r) = (1) (ry).
Let & = mn, (m,n) =1, m,n # 1. Then

0= DU f@f mnjdy= 3" D F(5)F(8:)f (mn]d,8,)

dedimn by ey dpedy

= 3 N IR0 m)f (0] 8} F ().

)€y, dyedy

But 916271
0= D 8 (mfoy) D F(6:)f " (n]8)
Sy ey, dyedp

= 3 DGO m 80 o)k 4 () ().
Sy edy dpedy
gy oyl
By comparing these equalities we obtain f~'(mn) = f~ (m)f*(n).
The statement (v) can be also formulated in the following, evidently
equivalent form:

icm
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(v') If the ring R 4 is associative, has a unii element, and is multiplica-
tive, the function f is multiplicative, and f = g = h, then either both the fune-
tions g, h, are multiplicative, or both of them are mot.

In this form it has been proved in the case of Dirichlet convolution
by Bell ([1]).

3. Let us now define: the convolution 4 defined by (1) is regular
if it satisfies the following conditions:

(a) The ring R, is associative, commutative, and possesses a unit
element.

(b) The convolution preserves multiplicativity.

(¢) The “Mobius-function” of the eonvolution A, defined by the
equation 1 * g4 = e;, assumes for prime powers only the values 0 and —1.

(The multiplicativity of u, follows from (b) and (v). In the case
of Dirichlet eonvolution x4 is the ordinary Mébius function, and in the
case of unitary convolution it is the Liouville funetion).

We shall say that the number n is A-primitive (or briefly: primitive,
it 4 is fixed), if 4, = {1,x}. In the case of Dirichlet convolution pri-
mitive numbers are the primes, and in the unitary ease primitive numbers
are the prime powers. From (b) and (iv) we obtain that in a regular con-
volution every primitive number must be a prime power, but the con-
verse implication is true in the unitary ease only. The question can be
posed - whether the set of primitive numbers determines the regular
convolution uniquely. We shall see later that in general this is not
the cage.

THEOREM I. The convolution satisfying (a) and (b) is regular if and
only if for every prime power p* the set A is of the form: 1, ', p*, ..., p"
= p¥, with some t 0, and, moreover, P el ped y, ...

Proof. Suppose, the convolution is regular. First we prove that
-1 if ¢ is primitive
(3) ha (2°) = B T,

0 if p°is not primitive.

If p° is primitive, then 0 = (uq*1)(p") = py(p*)+1;
#a(p®) = —L. '

If now p“ is an arbitrary prime power, and A ={1,p,...,p%}
where 0 << a; <0... < g, = g, then it is clear that p* must be primitive,
and go

hence

r r
0 = (pa * 1)(0%) =1+ pa (P + Dpa(p%) = ua(p);
j=2 j=2
whence no one of the p“ (j >2) ean be primitive. and, moreover,
#4(p9) =0 (j = 2). So (8) is proved and we see that in Ap,, there can
be one primitive number only.
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Let us now observe that p™ed o, since p* is not primitive, .an'd
from (a) and (i) it follows that in every set 4, there must be a primi-
tive number (namely, the least number in 4, different from 1). From
this we obtain that p2 ®ed,e (by (ii)), but as p~“ < p%, we must
have a; = 2a;, for p~“led ,. An easy induction leads us to = ka,
(b <r), and p%ed oy (k=1,...,7—1), which proves thcj first part
of the theorem. The second part of the theorem can be easily checked
by computing the values of the function u,(n) for prime powers.

TrrRoREM II. Let K be the class of all decompositions of the set of non-
negative integers into arithmetical progressions (finite or mot), contam@zm/
zero, and such that no two progressions belonging to the same (.le(mmposmon
hawe a positive number in common. Let us associate with every prime number p
an element m, of K. Let the sets A, be defined by:

Hp:i'?Ami m = npfz’

if and only if for every i: ay < B, and a;, f; belong in the decomposition

7y, 10 the same progression. Then these sets A, define a regular convolution,
(3 . . . .

and conversely every regular convolution can be obtained in this way.

Proof. Let us write (a, 8; if in the decomposition =,, the numbers
a, B belong to the same progression. Let d = [[pi, m = [ [pf‘i, = []pli.
If dedy, med,, then a; < 8 < iy (o, Bidis {Biy yide; hence oy, yidy,
i.e. deA,. Moreover, from {a;, f;); it follows that (o, f;i— a;);; simi-
larly <apy y3— ;)¢ Hence {(f;—ai, yi— )iy 1. 6. mfdedyy.

If dedy, m(ded,y, then it is easy to verify that ded,,, and med,,
by proceeding similarly as above. Hence the associativity of the con-
volution is obtained.

The commutativity, existence of the unit element, and the multi-
plicativity follow at once from the definition of 4,,. Hence the condi-
tions (a), (b), are verified and now the application of the theorvem I
proves the first part of the theorem.

Conversely, let the sets 4, define a regular convolution. Then wo
can associate with every prime number p a decomposition of the seb
of non-negative integers putting two integers m and » (m < n) to the
same class if and only if p™e 4 o From theorem I it follows that these
decompositions belong to the class K, and from (b) and (iv) wo get mo-
reover, that [[psted,,, if and only if, for every ¢, a; < f#;, and the numbers
a;, f; belong in the decomposition associated with p; to the sameo pro-
gression. The theorem is thus proved.

From this theorem it follows that a regular convolution is uniquely
determined by a sequence {m,}, of the elements of K. It is easy to seo
that if the sequences associated with two convolutions 4 and B differ

where

ARITHMETICAL CONVOLUTIONS 87

only by their order, then the convolution rings R, and Ry are isomor-
phic. Indeed, if 4 ~ {x,}, B ~ {x,}, and Ty = T (Where f(4) is a per-
mutation of the set (1,2,...)), and we define a transformation s of R,

onto Ry by
so([Jpe) = o (] Tosi),

then s will give the desired isomorphism.

The following problem can be posed:

P 410. Is it true that if the rings R, and Ry are isomorphic, then
the sequences {=,} and {m,} differ only by their ordering?

We are unable to answer this question. It should be remarked, that
in the special case when A is the Dirichlet convolution, and R4 ~ Rp,
B is also the Dirichlet convolution. This follows from the well-known fact
that the ring R, has no zero-divisors, for each other convolution ring
must have zero-divisors (if d¢4,, then eg * enjg = 0).

Let us remark that if {0, K, 2K(, ..}, ...{0, KP 2K®, ..}, ...
are the progressions belonging to the decomposition 7y, » then the numbers

pf‘y('l) are primitive numbers. Consequently we infer that if in a convolu-
tion A every primitive number is prime, then every decomposition con-
sists of one progression: 0,1, 2, ..., and so 4 is a Dirichlet convolution.
Similarly if in a convolution A every prime power is primitive, then every
decomposition consists of two-element progressions: 0,1;0,2;..., and
50 A must be the unitary convolution.

We give now an example which shows that, in general, the set of
all primitive numbers does not determine the econvolution uniquely.

Let the convolution 4 be defined by the sequence {75} of decompo-
sitions, where z, consists of the progressions 0,3,6,9,12;0,4,8;0,1;
0,2;0,5;... (the remaining progressions are of the form 0, k), and the
other m, consists of 2-element progressions. Let the convolution B be
defined by the sequence {m,}, where m; consists of the progressions:
0,3,6,9;0,4,8,12;0,1;... (the remaining progressions are of the
form 0, k), and other m,, coincide with m,,.

The primitive numbers in A and B are thus the same, but the con-
volutions are obviously different.

4. Now we shall prove two theorems generalizing the results of Co-
hen [2]. First let us define for all prime powers p”* the type of p* as the
least number ¢ 5 0 such that p* belongs to 4 ;. The type of p* shall be
denoted by 7(p"). For all primitive numbers p* we define the rank of p*
as the greatest number r (if there exists one), such that p” belongs to Ayr.
If such a number does not exist, we shall say that p* is of infinite rank.
We shall denote the rank of p* by r(p").
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TaporREM III. Suppose that in a regular convolution A, for all pri-
mitive numbers p*, r(p*) < M. If f = g *h, where h(n) = n, and g(n)
is bounded, then

n<ax

2M )

d)+0(wlog

for @ =2, where

Ay = []HE=pE L

— a = []pit, v = ©(pfh), v = r(p7).
s P 1

Proof. Let U, be the set of all unitary divisors of the number m,

T(w,d) = D m, Tz, d) = 3 m.
m<e m<x
dedm A<D

Let us first observe that if [[pfec4,,, then by Theorem 1, with
=1

suitable oy, ..., op (0; < 73— ;)

YT, (i =1,..,F),

and conversely; hence

T(x,d) = Ty(m, patort,  piktoe),
0oy —ay/ry 0 ap<ri—ap/Th;
But
= 2 m=d) l-—; 2D 1 ofwsa)
l<x(d
@)1 =1
(by [2], Lemma 4.1), where 9(d) = X u?(l) = 2", and so
iid
Wlfvz (1~1/py)...(L—1/ps) s
(@, d) = 2 \ Sp g T ()(w(d))}
_ @*p(d) 2 Z ﬂ: o —H’)(zm?(d)x \ 1)
Y : P pikT o
UC {
w*p(d) ; i 2p(d) e
=T (@) + 0lod (@) 1Y) = L2 A(@)+ Ofad @y,

where 1 = 1-+log M /log2.

icm
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By interchanging the order of summation, we obtain

g(d g(d) fr*p(d)d(d) 3
z 0= SR o)
n<m a<e <z
o 0fa SIDIDA@) (D)
e g gt g

The resulting series is convergent, for

W11 - , 1 d
<[ Tl )< [T -

For the same reason the second summand is O(x). Now remark that
9{n) < d(n), where d(n) is the number of divisors of the number #; hence
by summation by parts and in view of the fact that

Zdr(ﬂ) = 0 (zlog” 'z

n<

(see e. g. [6]) we obtain the estimation of the third summand which was
required. The theorem is thus proved. In the case M = 1 this is the theo-
rem 4.1 in [2]. Our method does not work if the »(p*) are not uniformly
bounded.

TueorEM IV. If the convolution is regular, f = g *h, where h(n)
= u(n)n, and g{n) = o(n*"*) with some positive &, then

3  vgdp@ .
i = 4 U@ o,
ngw " d=1
where
Ps Pi
) = )
PO= 11 pi n pitl
R
()=
Jor @ = pit...pk

Proof. Evidently

_ a
D =" Yo@umnjamja = Zg—(d-) 2"

n<xT nsx de dy < n<e
n/d square-fres
dedy
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Let:
n F(w,d) = Z n  and 4= [Ip"'

nLT
n, dgquare-free
n
If ded,, and n/d is square-free, then =n = dpil...pfk @, where
(@, Q) = 1, Q is square-free, and o; can assume the values 0,1 if 7(p¥) = 1,
and 7(p;) > a;; in the opposite case it can assume the value 0 only. Hence

g
>
%

where the dash indicates that o; assumes the above mentioned values,
the inner sum ranges over such »’s of the interval [1, x], for which dpi1...

pik belongs to U, and n/d is square-free. Subsequently (here the double
dash indicates the summation over such n <w, that (d, n/dp}...pik) = 1)

F(z,d) = Z D

..... o) VKX

= 2’ dpi’l---;ﬂi’“ DV ur(njap}..
=d 2 Qalolip...pRPY..oF,

n<w
,,,,,

we denote, following [2], the sum D' u2(m)m.
Mt
(M, d)=1

(nfdp7...p)n

-pE)nfdpTt.. . piE

where by Qg(t)

In view of [2] (lemma 5.3) we have

Qa(t) (3 npf:l)twro(“ﬁ(d))

3 P
™y pA1

. 22 M Bd) .
T R r e |

hence (with the notation §(d) = )

......

8@ , yv_ 1 (w“‘“

—a e O =

a Ul%%pll‘“fpkk l/d VRET

_ ng)mz H (1_{‘ _1_) -+ 0( ______ ]7 (1 -} ——-—-—))
p:’i Uy P vy 117 aUg

- (;7% -1 w{ng
(D7) >a; r(w) >ay

23.54(1_) 2+0(-—f' ”(H l/p))

I
£

icm
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Consequently

ZLF( @, )

n<Lr <z

3, % ,
o Y o SR of e 3820
d

=1 >z

raf I3

Ve

The series is convergent, because (d)g(d) =
second summand is O(a**~7).
Observe now, that

0(d** %), and the

[](1+ %)<(1+1/V5)",

D

where & is the number of different prime divisors of the number d, and
#(d) = 2% hence

1

1
<t d +e

S9(d 1+log (1+1/¥2)log=12 .
( ) ) — O(m&,_)

=0(m”2 i

d<x

as 9(d) = o(d}) for every positive A. This gives the required evaluation
of the third summand, and the theorem is proved.

COROLLARY. By puiting in the above proved theorems g(n) = 1, we
obtain

(@) PR =%S‘

n. <

+ 0 (zlog*™ )

in the case when r(p™) < M (o,4(n) is the sum of the numbers appearing

i 4,);
caln) =7 ”( p+1 'p”“”) M

(o’y(n) is the sum of all square-free numbers appearing in A,).
The equality () follows in a simple way from theorem IV with the
use of Euler products.

) ,/

'ﬂ‘t-, @
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5. Let us assume, that 4 is a regular convolution. In the ring R
one ean distinguish a subring B, consisting of the funetions f with firite

=§ )

the complex field, moreover B is a Banach algebra, since

= fw Zf(d)g(v‘b/d)]<20o D 1f (@) g (n/d)]
n=1 dedp

n=1dedp
< g dl;lf(d)g(%/d)l :gébvwn-\g( 2 a1+l ()] = IF1-gl-

In the case of Dirichlet convolution, B, is evidently isomorphic
with the I,-algebra of the multiplicative semigroup of positive integers.
In the general case B, happens to be in some sense very “near” the
1,-algebra of a suitable semigroup. Indeed, let us define a multiplication
in the set of all non-negative integers by:

norm: ||f]l . The ring B, can be dealt with as an algebra upon

If = gl

i tqg

Oom=mo0=0,

O ? m ¢A7N’N- 7
mo n =
mn,  Medyy.

This multiplication defines a semigroup ¢ Let ns define a “near-to-
convolution” multiplication in the set of all functions on ¢ which vanish

at zero and have finite norm Y [f(n)| as follows:
=1
(fxg)(0) =0,

(Fxg)n) = D' flu)g(v)

UOY=T,

(n # 0);

the obtained normed ring (with usual addition) is isomorphic with B,.

Now we shall find the maximal ideals in B, or, which means the
same, we shall find the non-trivial homomorphisms of B, into the field
of complex numbers.

Let P be the get of all primitive numbers of infinite rank (from theo-
rem II and the obvious fact, that two infinite arithmetic progressions
containing zero must have common elements it follows that every two
numbers from the set P are relatively prime).

Every natural number n s 1 can be uniquely written in the form

n =[],

@
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where the gi' are primitive numbers belonging to the set 4,. Let y be

any homomorphism of B, into the complex field Z. If ¢"¢P, then, as for

some 7, §"¢A,., ¢ (Where j = g°) is nilpotent, and so x(¢;) = 0. For

every n, z(n) = [] (x(¢g))" and we see that if not all of the gf* belong
K3

to P, then y(n) = 0. As every homomorphism B, — Z is continuous,
it is determined by the values assumed for e¢;, where j;eP.
Let 4; = x(e;;) (evidently |4;] <1). Obviously yx(e) =1, and so. every
homomorphism must have the form

(4) 2 =f@+ 250 [T,

where the summation runs over all k¥ of the form n )%, where pi
belong to P.

Conversely, the mapping defined by (4) with |A;] < 1 defines obviously
a homomorphism: B, — Z. Hence we have proved

TuroreM V. If M is a mawimal ideal in B, then there emists a se-
quence {Ay, Ay, ...} (which is finite and has s elements if P has s elemends,
and is infinite if P is) of complex numbers satisfying |4;) <1 (i =1,2,...),

such that
> fm ][] =0},

kent (B g

M :{feBA: F+

where the pit belong to the set P.

Conversely, every such sequence defines a maximal ideal.

The following theorem shows that the cardinal number of the set P
is the single invariant of homeomorphisms of the space IM(B,) of the
maximal ideals of B,.

THEOREM VI. If s is the cardinal number of the set P, then the space
M(B,) is homeomorphic with K°, where K 14s the set {2: |2| <1} in the
complex plane.

Proof. From theorem V it follows that the sets of elements of M (B ;)
and K° can be identified. Now we remark that with the notation f (M)
for the Gelfand transform of f,

FOM) = J(hay hayon) = Z FloyA. . A

- P
ke 1
;’bel’
hence the functions f(M) are continuous in K* and in view of the com-

pactness of K° we obtain the homeomorphism of M (B,) and K° (see
e.g. [4], th. 1/, p. 39).


GUEST


94 W. NARKIEWICZ

COROLLARY. In the case of the unitary convolution, the set P is void;
hence s = 0, and so there is only one mawimal ideal, consisting of all func-
tions vanishing for n = 1.

Oonsequently we infer that every function f(n) non-vanighing

for m — 1 has an inverse in the unitary ring By, or, in other words, if
o

f has an inverse g in Ry, and the geries Y'|f(n)] is convergent, then the
=1

=<}
series D |g(n)| is also convergent.

Frgxln the theorem 5.8 in [5] we infer that in the Dirichlet case
the algebra B, is semisimple. From the remark, that every other a.lgebr.a.
B, hasg nilpotent elements it follows that the semisimplicity of B, is
a characteristic property of the Dirichlet qonvolution.
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SUR UN PROBLEME DE K. URBANIEK
CONCERNANT LA DIMENSION DE HAUSDORFF

PAR

J.-L. LIBOUBAN ®r N. RIEU (MONTPELLIER)

Urbanik a posé le probléme suivant (1):

Le semi-groupe additif engendré par un. ensemble parfait situé sur
la demi-droite (0, oo) et ayant une dimension de Hausdorff positive dans
tout voisinage de 0 contient-il nécessairement toute la demi-droite?

La réponse est négative. J.-P. Kahane nous a indiqué le principe
de la construction d’un exemple contraire et proposé de réaliger cette
idée. L'ensemble E que nous allons exhiber a pour dimension de Haus-
dorff le nombre 1 dans tout voisinage de Vorigine et le semi-groupe additif
qu'il engendre ne contient dans [0, 1] quw'un ensemble de points de mesure
de Lebesgue nulle.

1. Construction de E et propriétés immédiates. F sera un ensemble
linéaire formé par la réunion d’ensembles digjoints dont les segments

supports ont pour extrémités gauches les points 27 et des longueurs
trés rapidement décroissantes

B = {0} (U By,

—-

B = {2""—% Zsﬁ,(;j,,_k, ot g =20 o0ul, ou...,oun 2’“}
k=0
ol les accolades désignent l'ensemble des points de la forme écrite, et
ol {a,} est une suite rapidement décroissante de nombres réels positifs
qu'on déterminera.
Les segments supports de 1 et H;_, (j =2,3,...) sont disjoints
8i et seulement si

1) D oFayy, < 270,
=0

(*} K. Urbanik, P 322, Colloquium Mathematicum 8 (1961), p. 139,
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