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SOME PROBLEMS IN THE ALGEBRA OF BOREL MEASURES
BY

8. HARTM AN (WROCLAW)

Not mueh is known about the structure of the Banach algebra M (@)
composed of all complex-valued bounded regular Borel measures on an
Abelian locally compact non-discrete group & (*). It may be recalled that
addition in M (G) and multiplication with a complex number are defined
in the usual way, while the product of two elements is their convolution:

pos(B) = [ u(B—t)v(d)
2

tor every Borel set E C @. Further, to define the norm of an element the
smallest non-negative majorant |u| of p in M (G) should be taken; then
we put

Nl = Ll (6.

Let S be the space of all maximal ideals of M(G) (Gelfand space)
with the usual Gelfand-Stone topology. The form of these maximal
ideals, in other words the form of an arbitrary homomorphism # of M (&)
onto the complex number field Z, was found by Sreider [6]. According
to his result

h(u) = [ () p(dl) for every ke,
G

where the “generalized character” y,(f) is a function on M (@) X @ subject
to the following conditions:

(8) xu(t+%) = x,.(8)x,(u) for almost every pair (¢, u) in the sense
of produet measure uxXp in Gx@G,

(b) sup es 5uplxu(t)l =1
“ .
(¢) For every fixed u the function x,(t) is u-measurable and if v < u

(read: v is absolutely continuous with respect to u), them yx, (1) = x,(?)
for v-almost every .

(1) See e. g. E. Hewitt, 4 survey of abstract has menic nalysis, in [3], espeeiall
p- 132-149.
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Our aim is to pose some questions regarding the classification of
measures in. M(G) in terms of their behaviour as functions (k) = hiw) on S,
Instead of z(h) we shall also use the notation (u)” (h).

The most important measures are invariant measures (Haar measu-
res); it is well-known that they differ from one another at most by a con-
stant factor and they belong to M (@) if and only if @ is compact. A mea-
sure which is absolutely continuous with respect to ITaar measure will
be called briefly absolutely continuous. Such measures form. a closed ideal I
in M (G). Plainly, if I is considered as a Banach algebra, it is isomorphie
to the group algebra L'(&), and so the corresponding Gelfand space
consists exactly of the Fourier transforms of L, or which means the same,
of the Fourier-Stieltjes transforms of I. Thus it is identie with tho dual
group @ = X of the group G and it is always (for non-discrete &) proper
subset of §. The Pontryagin topology in X is equivalent to the topology
induced by S ([5], p.50).

Definition 1. A measure ux will be called wormal, if its spectrum
{u(h): heS} is contained in the set {&(z): #eX} L (0), & or ()" denoting
the Fourier-Stieltjes transform of u.

Definition 2. If 4 is a Banach subalgebra of M (@) and if, for
every heS, h(4) # 0 implies the existence of an aeX such that a(h)
= u(z) for all ueA, then we call A normal subalgebra.

Let 4 be a Banach subalgebra of M(@). According to whother 4
containg a unit clement or not its Gelfand space S, consists either of all
maximal ideals of 4 or of all regular maximal ideals of 4. In the first case
8, is compact, in the second it is locally compact non-compact ([4], § 11).
An arbitrary homomorphism M (&) — Z can be restricted to 4. By such
restriction every element of S becomes an element of §,. Obviously,
in this way different elements of § can produce the same element of §;
in particular, different elements of X can “melt together”. We therefore
introduce the space X, which arises by identifying those elements ., «,
of X for whieh i(x,) = i (w,) whenever ued. In this way X, becomes
a subset of 8. The topology in X derived from X by such identifica-
tion is in general stronger than that induced by 8. . g., if ¢ is the cirele
group and 4 consists exactly of measures vanishing outside the subgroup
of elements of finite order, then X, = X (there is nothing to be iden-
tified) but the topology in X is discrete, whereas X is a denso subgroup
of the compact group 4 (see o. g. [1]). On the other hand, if I is o dosed
subgroup of @ and A consists exactly of meagures vanishing outside M,
then X, = H = X[y, Uy being the annihilator of H, and so the (Pon-
tryagin) topology in X, derived from X, is equivalent to that indueced
by 8. In the sequel, whenever the space X, is referved to as a subset
of 84, this inclusion will be considered in the topological sense ag well.
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Definition 3. If S, = X4, then we call 4 strongly normael sub-
algebra. ’

Definition 4. If for a measure u<M (@), for every heS and for every
e > 0 there exigts an reX such that |u(h)—p(x)] < & then we call u
an analytic measure: in other words, the measure p is analytic if its spec-
trum is identical with the closure of a(X).

Definition 5. If X is dense in S, then 4 may be called analytic
subalgebra.

Definition 6. If every homomorphism h,eS, is extendable to
a homomorphism % of the whole algebra 1 (&) so that heX, X denoting
the c¢losure of X in S, then 4 will be called strongly analytic subalgebra.

Note the following evident implications:

Every strongly normal subalgebra is normal and every strongly
analytic subalgebra is analytie.

Every strongly normal subalgebra is strongly analytie.

If u is a normal meagure such that either h(u) # 0 for all heS ox 0
is in the closure of n(X), then u is analytic.

If 4 is normal (analytic) and ped, then u is normal (analytic).

Let A, be the smallest closed subalgebra containing the measure u.
If w is normal, then A, is normal. If 4 is analytic, then 4, is analytic.

From the properties of the ideal I mentioned above we deduce at
once that I is a strongly normal subalgebra; hence the absolutely contin-
wous measures are normal. To have further examples of normal measures
let us notice that the subalgebra consisting of measures vanishing outside
a fixed finite subgroup of & is strongly normal. An example of an analytic
subalgebra which is not normal may be M, = M,(G) or the direct sum
My-+1I, where M, denotes the subalgebra composed of all totally dis-
continuous measures (2). A curious example of a strongly analytic sub-
algebra can be found in [2] where the authors consider measures with
supports contained in a very specifically constructed set @, homeomor-
phic to the Cantor ternary set. It is proved that every linear funetional L
on the (linear) set M(Q) of all measures under consideration can be ex-
tended to a homomorphism he X, provided that I fulfils some simple
conditions which are obviously necessary. It follows at once that the
subalgebra generated by M (Q) is strongly analytic.

PrOBLEM 1. Must a normal subalgebra be strongly normal (P 394)?

ProsLEM 2. Must an analytic subalgebra be strongly analytic (P 395)?

ProsreM 3. Is My(G) strongly analytic (P 396)?

We shall prove that the answer to the lagt question is positive in
the case when @ is the circle group 7 = {¢*: 0 <t < 2x}. Let hy be

(%) loc. cit. (%).
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a homomorphism of M4z(T) onto Z and let h be its extension defined as
follows: if 4@ ig the discrete and 4 the continuons component of ue M (1),
then put 2 () = h;(x®). So we have h(u) = 0 for every continnous mea-
sure. Since the set of all continuous measures is always an ideal in M ((),
1 is actually & homomorphism. We must show that b isin X. If g, = u® -
+4? (r =1,...,%) are measures from M(T) written as sums of their
diserete and continuous components, then let H = ({;, t,, ...) be the
subgroup of T' generated by the supports of 49, ..., uf?. There is a eha-
racter (in general not continuous) v, of H such that

d P
= it pulty)
=1

Thus, for an ¢ >0 a continuous character ¢ of 7' has to e found
so that for » =1,..., %k the following inequalities hold.:

(i) | () — f O ()

gmtj{ <,

2

(@ = [ =™l (d)).

0

(if) (@) < &

If N is sufficiently large and & sufficiently small, then (i) will be
implied by

(i) e — () <8 (j=1,...,N).

In virtue of Kronecker theorem. (iii) is satisfied by some positive
integers n;, f,,..., the sequence of which has positive density. Now
the Fourier-Stieltjes coefficients a, of a continuous measure are for n £ 0
equal to those of s continuous function of bounded variation. Hence,
applying the well-known theorem of Wiener [8], we have

11m - {|w UE

A =0 (r=1,...,k).

Consequently
1 [ ke
Tim, = | ")) .1
" 12[“1 I+

Obviously, among the n; there is a number n, such that Z afl)] <

ot Z |(;A")1J =0,

r=1

Eence we can satisfy (ii) and (iii) simultaneously taking » = n,.

- Analogously it ean be proved that M, (@) is strongly analytic if ¢
is the real axis.
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Here are further questions concerning normality and analyticity:

ProBLEM 4. If a subalgebra consists of normal measures only, must
it be normal (P 397)?

PrROBLEM 5. If a subalgebra consists of analytic measures only must
it be analytic (P 398)?

ProBLEM 6. Is the set of all normal measures a subalgebra (P 399)?

PROBLEM

ProBLEM 8. If u is normal (analytie) and » < g, must then » be
normal (analytic) (P 401)?

The unique possible involution in M (@) is given by u(E)-—
= p*(H).

Definition 7
for all heS.

It is easily seen that p and u* are either both symmetric or both
agsymetric.

Definition 8. The subalgebra A, closed with respect to involution,
is called symmetric if it consists of symmetric measures only. It is called
Y () for all heS, and ped.

Sinee g = (u*)", a subalgebra closed with respect to involution must
be symmetrie if it is normal and strongly symmetric if it is analytic.
It is a known fact that the whole algebra M (@) is assymetrie and so not
analytic (%). Actually, there are examples of measures in M (¢) such that
|#(z)] > & >0 but 1/u(z) is no Fourier-Stieltjes transform of any mea-
sure. According to the well known theorem of Mazur and Gelfand this
phenomenon ecannot oceur if x is an analytic measure. Moreover: if u
is analytic and F(2) is a holomorphic funetion in a region containing the
spectrum of x, then there exists a measure uy such that ur(h) = F (a(h))
(he8), and therefore iy = F(u). This fact justifies perhaps the term
“analytic measure”.

7. Is the set of all analytic measures a subalgebra (P 400)?

p(ET)

. A measure will be called symmetric if u(h) = (u

*) (B

strongly symmetric if u(h) = (u*

PrOBLEM 9. Must a gymmetric subalgebra be strongly symmetric
(P 402)?

ProsrEM 10. Is every symmetric or every strongly symmetric sub-
algebra analytic (P 403)?

PropLEM 11. Is every symmetric measure analytic or conversely
(P 404)?

Obviously, if 4 is analytic and if z(2) - 0 (1. e. if |z (2)|
a compact subset of X), then x is normal.

< ¢ outside

(®) loe. cit. ().
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ProOBLEM 12. Is every measure ux with u(#) — 0 a normal meagure?
A symmetric measure (P 405)?

ProsLEM 13. Is for a normal eontinuous measure always gu(x) -0
(P 406)?

It is easily seen that if 4 is a strongly normal subalgebra without
unit, then f(z) — 0 for all ped. In fact, let us notice first that the smal-
lest subalgebra A, containing 4 and all absolutely continuous measures
(i. e. the ideal I) will be still strongly normal: 8, = X, . Further, we
have X, = X and the topology induced in X, by 84, is the same ag
the “original” topology of the dual ¢ = X. It is sufficient to observe
that I alone provides such topology. Since 4, has no unit, 8.4, 18 locally
compact non compact and |4 (#)] < & outside a compact set in 8, = X

PrROBLEM 14. If z(2) - 0 for every ped, must then 4 be a normal
or even a strongly normal subalgebra (P 407)?

Obviously, a positive answer even to the weaker one of these ques-
tions would imply a positive solution of Problem 12. If the solution of
Problem 14 is “strongly positive”, then the ideal congisting of all mea-
sures for which 4 () — 0 would be the largest strongly normal subalgebra
without unit.

Definition 9. A measure u may be called Cauchy measure it for
any p-measurable function ¢, not equal to 0 u-almost everywhere, the
relation

HHARTMAN

Pt u) = p(t)g(n)

for p-almost every element (4, %) of Gx@ implics the existence of
a continuous character z of the group G such that x(t) (t) p-almost
everywhere.

It is known that Haar measure u, is o Cauchy measure (see c. g.
[1]) and so is consequently every measure » such that o << v and » <€ u,.
.It follows from the property (a) of a generalized character 2, that if u
isa Ozmchwgeasure, then x,(t) is p-almost everywhero oqual to o charac-
ter and [y, (t)u(d) is a value of (@), Henee every Canchy measure iy
normal. Moreover, if 4 is a Cauchy measure, then by (e) every measure
v.< # is normal. The measure ¢ in 7' induced by the Lebosgue step fune-
tion is not a Cauehy meagure, since there exists a gunm'a,lizdd character o,
such that 0 << |y, (#)] = constans < 1 g-almost everywhere. Thig exam’plz»
was produced by Sreider in [7] and the present author apologizes for
having overlooked it and mentioned in [1] the Cauchy pro;perw of meagure
o a8 an open question. The matters under discussion can be an object
of further problems, as e. g.: .

ProsuEM 15. Is ¢ an analytic or even a mormal measure (P-408)¢
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ProOBLEM 16. Is every absolutely continuous measure a Cauehy
measure (P 409)?

It may be noticed that there arc normal measures without Cauchy
property, for example the point measure in T = {¢": 0 <t < 2x} placed
at t = m.

The author is indebted to S. Rolewicz for some useful remarks.
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