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only if the space M may be written in the form (1.2) of wnion of two disjoini
closed subsets. The relations between these two decompositions are given
by (1.3), (1.5) and (1.6).

Remark. The proof given in [4] cannot be indirectly used here,
because we do mot know whether the theory of analytic funetions of
several variables known for the Banach algebras is true for the p-normed
algebras. So we pose the following problem:

P 393. Let A be a p-normed algebra, SN its multiplicative linear
funetional space. Let z,...,®,c4. The joint spectrum of the n-tuple
(@1, ..., %) I8 defined as

O(@yy ooey ) = {(f(‘ﬁl)’ ,f(:b‘,,/))e(j”':fegn} .

Let ®(2,...,%) be an analytic function of n complex variables
defined on an open subset U C C" containing the spectrum. o (o, ..., #,).
Does there exist in 4 an element y such that

7(y) = O(f(@), ..., flaw))

A similar problem may be posed also for the locally analytic opera-
tions in a p-normed algebra (for the definition ef. [2], § 13).

for every  feM?
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L. WEODARSKI (LODZ)

Introduction. Tn my preceding paper [4] I gave a definition of the
continuous methods of limitation as follows:

Definition 1. A functional method of limitation A deseribed by
the sequence {a.(t)} of functions a.(t) defined in the interval t, <t < T
(T < +oo) is ealled continuous method if

(i) all funetions a,(t) are continuous in this interval t, <t < T,

(ii) there exists an increagsing sequence fy, by, ta; .-vstmy - tending
to T such that for every sequence © = {£,} the convergence of the series

Aty 2) = D a(1) &,
=0

for t = t, and ¢t = t,,,, implies uniform convergence of the series A(t, z)
in the interval t, <t <tyi1-

Definition 2. The sequence x = {&,} is called limitable by the contin-
nous method A to the number &, if

1° the series A (i, ) is convergent for #, <t < T,

2° the limit LimA(t, z) = & exists.

Definition 3. The set A* of sequences x = {£,} limitable by the
method A is called the field of the method A.

Now we shall give a new definition of & continuous method of limi-
tation:

Definition 4. A functional method of limitation A4 = {a,(!)}
(o <t < T) will be called continuous method (in a mew sense) if this
method satisfies the condition (i).

* written during my stay at Tulane University.
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We have given up eondition (ii) for continuous method of limitation,
but we introduce instead of this an additional condition for the limita-
Dility of sequences; this stronger limitability shall be called ¢-limdlability.

Definition 5. We shall eall a sequence # = {&,} c-limitable to the
value £ by a continuous method A if, besides the conditions 1° and 2°,
the following condition is satisfied:

3° the series A (f, #) is almost uniformly convergent in the interval
ty <1 < T, i. e. uniformly convergent in every closed interval ¢, <t <1,
where § < T.

Definition 6. The ¢-field A* of the method A is the set of sequences
¢-limitable by this method.

In this way, for the sequences ¢-limitable by continuous method
in the new sense we can obtain all the theorems proved for sequences
limitable by continuous methods in the old sense (see [4], [5], [6]). More-
over thanks to this such important methods as Riemann’s are included in
the general theory of comtinuous methods. Also the c-field (def. 6) of the
continuous method in the old sense (def. 1) is obviously the same as the
field (def.3) of this method, because the almost uniform. convergence
of the series A (¢, x) is a consequence of condition (ii).

1. We shall talk of continnous methods in the new sense only (de-
finition 4).

TrEOREM L. Huvery sequence x = {&,} convergent to zero 48 c-limitadle
(det. B) by the continuous method A to the number D &, if and only if

(a) Ima,(t) =0, (v=0,1,2,...),
T~

b A sup (1) < -

(M) 14 10«112' )

Proof. Necessity. The condition (a) is obviously satisfied and (b)
follows from the definition of ¢-limitability and from Theorem I in [4]
(p. 163).

Sufficiency. The condition (a) and (b) imply also that ) |a,| =
Pl

Al
Now we shall prove for every sequence {£,} convergent to zero that the

< I', and that

el
series }'a,(t) &, is uniformly convergent in the interval ¢, =
V=0

00 00
lim }'a,(t)&, = 3 ,&,. This follows from our assumptions and the in-
lsT— v=0 V=0

equalities

1 j @y (1) &,

“N41

< [lsup 6|

0 -
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and
[=e]

| N ati— Y b

V= =0

N o 0
<suplfri[ﬁfal.(t)ﬂarlhsgpysta[ 2 i+ Y ]

r=N+1 =N+

!

TrEOREM II. Every convergent sequence T = {51} is c-limitable by the
continuous method A to the number 2 a, &, +( Zal,) lim &, if end only if
=0 V00
(a) and (b) hold and

o0
(c) the series D an(t) is almost uniformly convergent in (ty, 1),
=0 .

(d) the limit Hm D a,.(t) = a evists.
1T v=0

Proof. Necesgity is obvious.
Sufficiency. Let ¥ denote {{,— £}, where { =1lim¢,; then

V00

a, (1) £ = AL, B)+ £ D a(1).

v=0

D

A(t,2) =

p

i
=

Our assumptions and theorem I imply, that the series A(f, z) is
almost uniformly convergent in (t,, T'), and it is obvious that

oo

Ea—Zm bt é(a— D w).

1!(]

lim A (t, ) 5‘
v

~

Definition 7. A continuous method of limitation 4 is called ¢-per-
manent, if every sequence x» = {£,} convergent to £ is also ¢-limitable to &.

TurEorREM III. The continuous wmethod A is c-permanent if and only
if conditions (a), (b), (¢), (d) are satisfied, and ¢, =0 (v =0,1,2,...),
a=1.

Proof. Bvident.

2. Now we ghall consider coniinuous methods for series.

Definition 8. Let B denote a method described by a sequence
b,(f), where b,(t) are continuous functions in the interval #, <¢ < 7.

o0
Definition 9. We ghall call the series I D'y, c-summable by the

V=0

continuous method B (def. 8) to the number & if
1° the series B(t,I") = Zb Yy» i8 almost uniformly convergent

in {t, T, i. . uniformly eonvergent in every interval {t,, > where i < 7T,
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20 the limit lim B(t, I') = £ exists.
tT—

~
TueorEM IV. Every oonverqem series D yy 18 c-summable by the eon-
V=0

tinuous method B to the nwmber 2/37,;/1, if and only if

(A) the limits lim b,(t) = f» (v = 0,1, 2, ...) ewist,
b —
(B) |B| = sup 2|bv(t)—bn+1(m < co.
L0<t<T V=0

Proof. The necessity of the condition (A) is obvious. We ghall
prove (B). From our assumption it follows that the funetional B, )
= Zb )y, 8, in particular, well defined for every el (i.e. for every

va=0

= Dy, such that Dlysl < oo) when ¢ is fixed. It is well-known, that in
the space | the norm of the funetional is ||B(t, I, = sup|b,(t)] ([1],
v

p.67). On the other hand, sinee lim B(¢, I') exists, it follows from our
{sT'—

assumptions that for a fixed [ the funetion B(t,I') is continuous in
t, <t < T and therefore it is also bounded, i.e.
(%) sup |B(t, I')| < oo.
fo<t<T

But inequality () given above means that the family of the functionals
B(t, I}, for variable ¢, is bounded for every I'e<l, and from the Banach-
Steinhaus theorem ([1], théoréme 5, p. 80) it follows that their norms are
also all together bounded, i.e. B* = sup|b,(t)| < oo.

(R

Using the Abel transformation

Dbty = _f; [0 (8) — By (80 £ b (£) i s - b (1) s

v=m

where &, = yo-Fvyb...+ vy, We see that the series Z'[b,, ()= by (D)1 &

Ve
is almost uniformly convergent in {fy, T') for every sequence {&.} con-
vergent to zero, and for these sequences

o0

lim 3 [Bo(t) b1 ()14,

T- 570
exists, beeause

bu Yyy = "bnll )J‘E-n-

ub/g

?[\{8

Henee (B) follows from theorem. I.

0:“ 1©
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Sufficieney. Since
B4 ) [bosa () — by (1]
v=0
it follows from the condition (B) that

sup [, (%) < B*, where  B** = |B|+ -sup [b o) < oo.

nitg<t<T fh<t<T

We can write the Abel transformation in the form

Dbt e 2 B (1) = buyd (][0 E1— b (1) [ — ET4- B (1) [ — €1,

V=1

where £, = y0+ yit+...+y, and & = ]jqu,. Hence we see that the series
B(t, I = Zb }¥» is uniformly convergent in {ty, T) for every convergent
series I' = 2%7 and

s

B(t, 1) = Y bu(t)ys =

=0 T=

[bo (8) = by 1 (1) TTE0— ET+ £by(

o

As a consequence of this and of theorem I we have

D

lim B(t, I') =
T —

(Bo—Bo11) (Eo— &)+ B0,

v

It
o

and hence, after easy calculations, we obtain finally

lim B(t, ) = Z‘,fzm

t+T—

COROLLARY. If every convergent series I' is c-summable by the con-
tinuous method B, then for these series I' the series B(t, I') is uniformly
convergent.

Definition 10. A continuous method B of summation is ealled ¢-per-
manent if every series which sums to y is ¢-summable to the same number y.

THEOREM V. A continuous method of summation B is c-permanent
if conditions (A) and (B) from theorem IV hold for B, = 1 (v = 0,1,2,...).

Proof evident.

3. Definition 11. The set of the series I'= )y, which satisfy the

condition 1° from. definition 9 is called the ¢-pseudofield B}* of the con-
tinuous method B of summation.

Colloguium Mathematicum X, 5
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TmorEM VI. The c-pseudofield By of the comtinuous wmethod B of
summation (def. 8) is the By-space (or Mazur-Orlicz space, see [2]) with the
PSEUAONOTMS : ‘

[l = l¥al (n=20,1,2,...),
?

!]Ylﬁ = sup .va(t) Yv

Dt 1<i<bn v=0

(m=1,2,3,...),

where {t,} is an increasing sequence which tends to T ‘

Proof. We have to prove that if a sequence {/"}, where I'* :_\_:'}lze 3,
satisties Cauchy’s condition, then there cxists an element [ Ve 3™ wuch
that I — I in B¥*. It ig elear that provided our a,smlmzlu)’oimm aro gatistied
the limits limy* = ) exist. We shall prove that /™ = }' yi is the required
element. V}{Tzo;)rove firgt that I — I in B, i. e. Um |17 -1, =0 (n =0,
1,2,...) and Lim|[* =" =0 (m =1,2,3,...), using the inequalities
|[*—T?|, < ¢ and |[I*—I"7|% < & for large & and p. Then we have to prove
that IeB**. The almost uniform convergence of the series B(t, I")
= ﬁb,,(t)yﬁ in the interval ¢, <t < 7 follows from the inequality

=0

< sup‘i‘ by (1) (15— %) 1 .
t =0

q
Slilp ‘ Z ba(t) v

Ve=t-1

“
g fe

u
+5up | 3 (8 (= %)

V=0

-{—slup} Z bu(l)yﬂ,
0

by the relation I — I" in BX*, proved above, and by the fact that /™ e BI™.
Definition 12. The ¢-field B} of the continuous method B of sumima-
tion is the set of all series which are ¢-summable (def. 9) by the method B.
TuHEOREM VII. The c-ficld B of the continuous method B of sum-
mation s the By-space with the psewdonorm

1 = suap B, ')

[ BV
wnd the pseudrwuww

M (=0,1,2,...), I8 (m=1,2,3,...)

given in theorem VI. .
Proof of this theorem is quite similar to the proof of the analogons
theorem in [4] (th. IV, p. 173), based on the previous theorem VI.
Definition 13. Let X, denote the space of sequences x == {&(1)}
of funetions &,(t), defined and eontinuous in the closed interval {a, f>
such that £,(f) tends uniformly to zero in this interval.

icm

CONTINUOUS METHODS OF SUMMATION 87

LemmA 1, The set X, (def. 13) is a Banach-space with the norm
flell = sufpl&,(t)].

Proof ig obvious.

Definition 14. We call a functional linear if it is additive, homo-
geneous and continuous.
Levuma 2. The general form of a linear functional in the space X,
(def. 13) with the norm ||z|| = sup|&,(t)] s
o, 1

f(ﬁ") = E'v(t) dﬂ” (“7

]
-

ot

where

(1) 75(t) 15 @ function with bounded variation in (a, p> foro=1,2 R

0o
(i) _)_—,'me, < oo, where V{,’n,, means the total variation of the function
v=1
7,(t) on <{a, ),
(ifi) 7o(a) =0 (v =1,2,3,...).
Proof. Let X, denote the subspace of X, whose elements are
x, ={0,0,...,0, &(1),0,0,...}

(1. e. X, is the set of vectors whose v-th coordinate is the only one different
from zero) with the morm || X, = sup|&,(¢)|. Then it is easy to see, that
t

8
the general form of a linear functional in X, is flw,) = [ & (t)dn.(t),

where 7,(f) is a function with bounded variation on (a, . This holds
because the space X, is equivalent to the space C<{a, f> of all continuous
funetions on closed interval (a, 8), and the general form of linear funec-
tional in C<a, #) is well-known (see [1], p. 61).

K3
On the other hand, in our space X, we have lim |js— Y| = 0;
N-+00 v=1

hence
fle) = f(lxm Z.r,) = hmf(wa) = lim Zn’f(r,,)
N-200 oy n—>00 gy N+00 ]
oo 0 B
= Zf(adu) = 2 f fﬁ(t)dﬂv(t)y
V=1 =1 a

where #,(t) are functions with bounded variation on <«, 8),
We see that

.w 8, _ .w £, .
(@)l < sup &, (0) glvum ] ZVn
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oo
hence &
Il < Z Vito-

On the other ha.nd it is easy to observe that we can choose @, = {0,
0,...,0, &(1),0 ..} such that |z, <1, [f{@o)| 2 Vi, — eo, Where &,

is arbitrarily small (seee.g. [1], p. 59 and 60). Let ¥, denote Z.rq,,
where z, are chogen as above; then we have

llyall = sup |&,()] <1,
1s

and hence
"

.7
WAl = fal = D Vine—= D -

D=1 ~n.—41

‘Considering both inequalities obtained above we have, finally,
il = ZVﬂm < oco.

Of course, without losing gemerality, we can assume that #,(a) =0
forv=1,2,3,...

Lisva 3. The space X of uniformly convergent sequences a = {&,(t)}
of comtinuous functions £,(i) on closed interval {a, f) is @ Banach space
with the norm o) = ssltp!&,,(‘t)l.

Proof. If is easy to see that for every weX the value of ||z]| is finite.
The proof of the completeness of the space X ig similar to the proofs of
similar theorems. If 2” = {£2(t)} X and {#”} is a Cauchy-sequence in X,
then the sequence {£2(2)}, when p tends to infinity (with v fixed), is uni-
formly eonvergent in £ to a certain function &,(¢). Let us write @ = {&(1)}.
It is easy to prove that #” -« in X and that weX.

LeMMA 4. The general form of the linear (def. 14) fumctional fli),
@ = {&(8)}eX (where X is the same as in lemma 3), is

~

f sman+ ) [ &),

=

where n(t), and 1,(t) satisfy the condition (i), (i), and (iii) from lemana 2,

and £(t) = Lim&,(1).

V>0

Proof. Let us consider f(x,), where w, = {&,(1)-— E(t)} e X, (def. 13).

Sinee the norms |jz|| in X, and in X are the sane, it follows from. lemma 2

that

v=1 a CEY

o f oo
flmg) = Zf[Eu(i)— E(t)1dn,(t), where ZVﬁn,, << oo;
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hence

oo fi B 5]
= [emanm— [ emad n.-

V=1

In virtue of eonditions (i) and (i), |9,(2)] < Viy, for « <t <8,

and henece the series Znﬁ ) is uniformly convergent in this interval. The
o

funetion 2"717 1) has bounded variation because V7 2’71 > Viy, < co.
v=1

On the other hand, we have x = x,-}7%, Where z = {&(t), &(¢),
£(1),...}. The subspace X C X whose elements T are as above is equlva.lent
to the CO-space of all continuous funetions on the same interval. Hence

]
for every f there exists an 7(f) such that f(Z) = [£(t)dn({). Finally we

have

NP

7 B
F@) = flw)+ @ = [ EDan@)+ D' [ &(t)dn,(z)

v

I
-

where #,(t) satisfy the conditions (i), (ii), (iii), and »(¥) = n(t)—zo'em(t)

is of bounded variation.

LeMMA 5. The general form of the linear functional in By* with respect
to the pseudonorm

Tl = sup \i‘bv(tm

b —1<I<tm " =0

v

is as in lemma 4, where o =1, 1, B =1n, &) = Db, (t)y, and &(1)
Ll r=0

= Xb.(t)y,
r=0

This follows from the fact that if we consider the quotient-space
B¥*/B, where B is the subspace of Bj* for which |I'|5 = 0, this space
with norm ||-||2 is equivalent to the subspace of X considered in lemma 4
(here we use also the Hahn-Banach theorem about the extension of a linear
funetional [1], p. 27-29).

THEOREM VIII. The general form of the linear (def. 14) functional
in the c-pseudofield By of the comtinuous method B is

o0
= Z CrVks
k=0

where ¢, are arbitrary for k <p (p a finite number) and

8 oo
o = [b@d[n@®)+ ) 1 (1)

v=k
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for k > p, where 1, < « < f < T, and functions n(1) and 9,(t) satisfy the
conditions (i), (i), and (iii) from lemma 2.

Proof. It is known (see [3], th. 2.21, p. 139), that in By-space every
linear functional is of the m™ order (i.e. is eontinuous with respect to
the first m pseudonorms), so that (see [31, th. 2.23, p. 139) it is the sum

m
Dfu(T) of m functionals such that f,(I") is continuous with respect to the
v=1

pseudonorm ||I'),. From lemma 5 and from the form of pseudonorms
I3 given in theorem VI it follows that

7 f 00 ﬂ ”
f([') = Z CoYut f va(t)')’ud”? () -+ z\_j J (Ebv(t) 7"1!) d"/n("’)'l
v=0 a V=0 0 o Vel
where t, < a < f < T, 5(t) and #,(?) satisfy the conditions (i), (if), and
(iil), given in lemma 2, and ¢, are arbitrary fixed numbers. ‘
It is easy to see that

o e B
[ X bu@pen(y = 3vs [Boldn(t)
Y= “

o V=0

because the difference

» B i ©
ow= 7o bu®dn(t)— [ 3bu(t)yoin(t)
=t & V=0

satisfies the inequality

joul < Vin- sup | 3 (i),

naI<B yInp1

0
and because the series Y0,(f)y, is uniformly convergent in a, f).
V=0

Now we shall prove_tha;t also

oo fim ) 0 f 0o
Z I[Zbu(ﬂ 7’?:_‘ d’?n(t) = Z Yo f ()D(t)d( E "’/*n.(t)) .
a Al " [

=0 D=0

Let us consider the difference

o f n . 2 il ~
b = 3 [[ X tutyra] i — Yw [but)a( 3 m(0)5
hence N=0 a V=0 ] [ ey
© f m A inf(n,m) .
=2 [ [ gbv(m]dnn(t)—)jo I 2 tottyp]amiv
n=0 a = N=0 o V=l
o B8 n i
= > I 3 vwr]|anw.
n=ptla V=Pl

©
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By the uniform convergence of B(t, I) in {a, >, we have

n
‘ \
| E‘ bu(t)ye) < e

Tplpal

for large p and » >p and hence

&
.

10|

VAN

Vi
1

the

Then from condition (i) it follows that limé, = 0, which completes
the proof. Poee
TuroREM IX. The general form of the linear (def. 14) functional F(I')
(I'= 3. in the c-field BY of the continuous method B of summation is
T
(1) Py = [ B, g+,
fo

where ¢(t) is a function of bounded variation n the interval ty <t < T,
and f(I") satisfies the same conditions as in theorem VIIL

Proof. The c-field B is equivalent to some closed subset in the
Cartesian product B}*x O, where ¢ is a space of continuous functions
in the interval t, <t < T. The functional may be extended to the whole
space (see [1], p. 27, th. 1, p. 29 eorollary and [3], p- 138), and a linear
functional in a Cartesian product is the sum of linear funetionals on each
of its components ([3], p.140). The form of the linear functional in ¢
is well-known ([1], p.59).
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