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et que 7; soit un point de densité 1 d’'un ensemble dans

: lequel
la fonction ¢, (f) est continue. On a alors pour tout xeX,

b
Ui(x) =ﬂfx(f)¢ki(t)dtltpk,»(n)! -0;

. 1 \
en posant x;=sign qaki(t);/—{— et en appliquant le théoréme A, on
obtient

b e (i
Ui =af|¢k,(t)|dt W;}(;”

On a d’autre part Ulx)2 )/ —--co, ce qui est impossible.

'TWO NOTES ON THE SUMMABILITY OF INFINITE SERIES

BY
A. ZYGMUND (CHICAGO)

1. ON 4 THEOREM OF HARDY

1. Hardy’s theorem
A series up~tu,—-...Fu.-+... summable (C,1) and with

terms O(i/n) is convergent
was historically the first O-Tauberian theorem. Though later more
general results were found (like Littlewood’s), Hardy’s theorem
is still useful because of the elementary character of its proof
and its sufficiency for many problems. For this reason any
simplification of its proof is of interest, if only for didactic pur-
poses, though of course there is no room for basic changes here.
In this note a proof of Hardy’s theorem is reproduced which
] usually give in my courses.
Let s, and

Un=(50+31+--‘+sn)/(n+1)

be the partial sums and the first arithmetic means of the series
uy+u; ... We shall also consider the delayed arithmetic means

(1) P =3n+3n+1+-~~+5n;{-k—1=(n+k)0n+k—l_ndn-—l_
mETT k k

== (1 +-;z-) Ontk—1 ——Z'Gn—i

of the sequence {s.}. If k tends to infinity with n in such a way
that the ratio n/k remains bounded, then onk defines a method
of summability which is at least as strong as the method (C, 1).
For if on—>s, then the last term in (1) is s-+o(1).

The peculiarity of the method (which seems to have been
first considered by de la Vallée Poussin [2] for different pur-
poses) is that oni is obtained from s, by adding to it a linear
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combination with coefficients positive and less than 1 of the

terms Unsi, Unt2, ..., Unsx—1. For, as easily seen from (1),
n+k—1 -~

@) Onk=8n (1—]———~) ;.
j=n+1 k

2. Let us revert to Hardy’s theorem, and let us suppose
that o.—> s, |y|<4/j for j=1,2,... By the remark just made,
k—1

n

ntk—i n+

k—1
G) ome— sl 3 Jul<d D L<d
i n4-1 ]

=n4l j=

Let s be any positive number and let k=[en]-+1, where [x]

denotes the integer part of x. The last expression in (3) is

thengA_nf/n:As. Since n/k<Cnfne=1/¢ is bounded, omi-> s,
so that lim|s—s,|<de. Since ¢ is arbitrary, lim s,=3s.

3. A similar argument gives Landau’s extension of the Hardy’s
theorem. Landau replaces the condition |w|<<A/j by u;<CA/j.
An argument parallel to (3) gives opr—s8,<<A(k—1)/n, and
choosing k as before, we get lim (s—s.) < 4s, Lim (s—38.)<C0.

To obtain the inequality lim(s—s,)>>0, we observe that,
by (2) onr is obtained by subfracting from s.ir—s a linear com-
bination with coefficients positive and less than 1 of the terms
Untssensslnrk—1, 50 that onr—8upr—1 > — A(k—1)/n. Let us replace
her_e n by n—k-1, and set k=[ns], where 0<<e<<1. Since the
mtlﬁl in——k—}—i)/k<(n—}-1)/k is bounded, we have on—ki1,x—s
so tha :

lim (s —sa) 2> — A gf(1—e), lim (s—sn) >0, -
. II. ON THE LIMITS OF INDETERMINATION
FOR THE METHOD OF RIEMANN

. L Let {ama} be a matrix satisfying the familiar conditions of
Toeplitz (see e.g. Zygmund [3], p. 40), so that if s,s,,... is
any sequente converging to a finite limit s, the sequence of
numbers ’

O =8my S+ 8my 8~ ... B S ...

also converges to s as m—oco. Let now {8} be any bounded
sequence so that the numbers on exist for every m, and let

§=hmsn, s=lims,, o=limon, o=Ilimaon
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If we set v
1) 1Zﬁ(wmo“i'!amxl“i"--+1amul+‘--)

(thus 1LA<C00) then it is immediate, and very well known, that
the interval (g,g) is contained in the interval (E,E) enlarged con-

centrically 4 times. In other words,

' @) ,é_(§+£)_—;—z(§—£)<g\<3<é‘(§+ﬁ)+%16_§)

By considering sequences {s,} comsisting entirely of £ 1 it is
easy to see that the number A defined by (1) is the least number 4
such that (2) holds for every bounded {sn}.

Let us consider a series u,—u—...u.+... with partial
SUINS 89, 8(s..-8ns... The Riemann summability of this series is
defined by considering the limit for a0 of the expression

S (sinna\? _ $ [fsinno)®  {sin (n41)ei?]
) “0'{}2“"( na )_,,%os"l('m{_ )“‘( T Da )i

(The equation (3) is certainly valid if the sequence {sn} is
bounded, the only case we are interested in here). Though the
problem of the limits of indetermination for Riemann’s method
has been studied, the exact value of 1 for it seems not to
have been obtained. It has only been proved that A<{1-4-2/x
(see Hobson, [1], pp. 224-225, and the bibliography there given).

Theorem. Let u,—~u,-... be a series with partial sums
So»81s.-., and let s=lim sa, s=Tlim s, Then, for a0, the limits

of indetermination o and o of

= sinna\?
w2 ()
satisfy the inequality (2) with A=%(eg—5). This is the best

possible value of 1.

2. On account of (3) it is enough to show that

sinna\® (sill(n—f—l)cz)Z W

@ 0 ( na ) (n+41le 73 (¢—3)

as a—0. It is easily seen that the left side of (4) tends to the

iotal variation of the function f(x)==(sinx)?/x® over the interval
15*
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(0,-}-c0). As seen from the graph of the function f, this total
_ variation equals

6) 142 Z(Sm)

=1\

where a,<Ca,<C... are the positive maxima of the function f.
These numbers a; are the positive roots of the equation

6) sinz=z cos z,
50 that the expression (5) can be written
7 142

() + 1211 s

Writing (6) in the form tanz=2z we 1mmed1ate]y see that
nj<<e;<m(j+1) for j=1,2,.

Let us take temporarily for granted that all the roots of (6)
are real. Hence, in addition to the positive roots a,ay,... we
also have the negative roots —a;, —a,,..., and the root o,=0.
Let Ky denote the circle with center at the origin and radius Nr.
Since the function (L1422~ is regular outside K,, we immedia-

tely find
% i 1 z sinz dz
22 T 0w\~ J Jsinz—zcosz 120
= ot Ky 0sz 142

f f ztanz dz
2m tanz—z 1F2°

integration being in the poslhve direction. The function tanz is
bounded on the circles Kwys, and the last integrand is O(z/~?)
for |z| large. It follows that f —0 as N->co, Hence the sum (7) is
KNt
ztanz 1
2m temz——z 1—|—zE 2 7=

as a simple computatmn of the residues at the points 0, &1 shows.
ll} order to complete the proof it remains to show that the
equation (6), which can also be written cotz=1/z, has only real

roots, If it had a complex root, the same would hold for the
equation

(8) cotz=a/z
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where a is a number sufficiently close to 1. It is therefore
enough to show that (8) has no complex root for 0<<a<Ci. This
is easily proved by means of the theorem of Rouché.

For let C, denote the circle with center nz and radius so
small that |cotz| majorizes Ja/z| om Cn. (n=0,4-1,...; the
condition 0<a<<1 is essential for n=0). Let C% denote the
circle lz]—Nyz—n/4 Along this circle |cotz| stays  away from O,
and so majorizes |a/z), at least for N large enough. Thus, in the
region limited externally by Cj,, and internally by the C, for
n=0,+1,...,+ N, the equation (8) has as many roots as the
function cotz, that is 2N. But in this region the equation (8)
has already 2N real roots whose presence is obvious geometri-
cally. Thus there is no complex root there.

Remark. The method used here can clearly be applied to
the summability (R,2k) defining the sum of u+u, ... as

2k
sinna
hm[u u( —) ]
>0 0+Ll "\ na

We shall not compute the corresponding constants.
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