

COMMUNICATIONS

8

et notre assertion est une conséquence immédiate du fait que l'intégrale est étendue à toutes les valeurs possibles des variables $\eta_k \pmod{2\pi}$.

Or il est bien connu que, $I_p(\varrho)$ étant sous-harmonique, $\log I_p(\varrho)$ est une fonction convexe de $\log \varrho$ et, puisque $M(t) = \lim_{t \to \infty} [I_p(t)]^{1/p}$, il suffit de faire croître p indéfiniment pour obtenir le résultat annoncé.

REMARQUE SUR UNE HYPOTHÈSE DES CHINOIS CONCERNANT LES NOMBRES (2ⁿ-2)/n

PAR

W. SIERPIŃSKI (VARSOVIE)

Les mathématiciens chinois pensaient que le nombre $(2^n-2)/n$ ne peut pas être entier lorsque n est un nombre composé.

M. Banachiewicz¹) a trouvé en 1909 cinq nombres naturels $n \le 2000$ pour lesquels l'hypothèse des Chinois est en défaut ²). Le plus petit de ces nombres est $341 = 11 \cdot 31$.

Je vais établir ici l'existence d'une infinité de nombres composés n pour lesquels $(2^n-2)/n$ est un entier.

A ce but, puisqu'il existe

(*) un nombre impair composé n pour lequel $(2^n-2)/n$ est un entier, il suffit de montrer que, pour tout n jouissant de la propriété (*), il existe un k > n qui en jouit aussi. Or, il suffit de poser:

$$k = 2^n - 1$$
.

En effet, soit q un diviseur de n et 1 < q < n. Alors, on a d'abord $1 < 2^{n}-1 < 2^{n}-1 = k$ et on voit sans peine que $2^{n}-1$ est un diviseur du nombre k, qui est par conséquent composé et par définition impair. Enfin, n étant impair par hypothèse, $(2^{n}-2)/n$ est évidemment pair et par conséquent sa moitié $m = (2^{n-1}-1)/n$ est un entier; comme $2^{n-1}-1=mn$, on a:

 $2^{k-1} = 2^{2(2^{n-1}-1)} = 2^{2mn} = (2^n)^{2m}$, d'où $2^{k-1} - 1 = (2^n)^{2m} - 1$, de sorte que $2^{k-1} - 1$ est divisible par $2^n - 1 = k$ et il est évidemment de-même du nombre $2(2^{k-1} - 1) = 2^k - 2$, c. - a - d. $(2^k - 2)/k$ est un entier. Ainsi, k jouit de la propriété (*), c. q. f. d.

¹⁾ T. Banachiewicz, Comptes rendus de la Soc. des Sc. et de Lettres de Varsovie. Classe III. Année 2 (1909), p. 9.

²) La Rédaction vient d'apprendre par une lettre récente de M. Banachiewicz qu'il y en a exactement sept (mais qu'il n'en a trouvé le troisième et le quatrième que plus tard), à savoir: $341=11\cdot31$, $561=3\cdot11\cdot17$, $645=3\cdot5\cdot43$, $1105=5\cdot13\cdot17$, $1387=19\cdot73$, $1729=7\cdot13\cdot19$ et $1905=3\cdot5\cdot127$.