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Abstract: Record linkage is a technique used to link records
from one database with records from another database, making ref-
erence to the same individuals. Although it is normally used in
database integration, it is also frequently applied in the context of
data privacy. Distance-based record linkage permits linking records
by their closeness. In this paper we propose a supervised approach
for linking records with numerical attributes. We provide two differ-
ent approaches, one based on the weighted mean and another on the
OWA operator. The parameterization in both cases is determined
as an optimization problem. We evaluate our proposal and compare
it with standard distance based record linkage, which does not rely
on the parameterization of the distance functions. To that end we
test the proposal in the context of data privacy by linking a data file
with its corresponding protected version.

Keywords: data privacy, disclosure risk, record linkage, super-
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1. Introduction

Record linkage techniques were developed with the purpose of finding entries
from different sources (files, databases, . . . ), that refer to the same entity. An
example is when we consider the join of two datasets that do not have a unique
key in common but do refer to the same entities. It is a widely used tech-
nique nowadays. For example, consider the linkability of a census dataset with
health records. Moreover, business registers are normally constructed from tax
and employment databases providing links between names, addresses, and fi-
nancial information (Colledge, 1995). Recently the UK government launched
and initiative to make all government data available as RDF (Resource De-
scription Framework) with the purpose of enabling data to be linked together
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(data.gov.uk, 2010), and similar initiatives were previously taken in the USA
(data.gov, 2010).

Record linkage was first introduced in Halbert (1964) and further developed
in Newcombe et al. (1959), Fellegi and Sunter (1969). It is nowadays a common
technique employed by statistical agencies, research communities, and corpo-
rations (Batini and Scannapieco, 2006; Winkler, 2003). Record linkage is also
implemented in data privacy techniques to determine the risk of a protection
method (Torra et al., 2006; Winkler, 2004).

A popular family of record linkage methods, known as distance-based record
linkage, attempts to link records by their closeness. A distance function is
used to determine how close records from different databases are in order to
establish their linkage. The selection of a concrete distance function and its
parameterization is a key issue in these methods. It is normally difficult and
tedious to test and find the most appropriate distance function and moreover,
to determine the correct parameters such as weights.

In this paper we introduce a novel approach to parameterize distance based
record linkage. We provide a supervised learning approach for OWA opera-
tors and weighted mean, which are common aggregators used to determine the
distance between records. Ordered weighted averaging (OWA) operator was
introduced by R. Yager (1988) and since its introduction, it has been widely
used in the computational intelligence field (Yager and Kacprzyk, 1997; Torra,
2004; Bronselaer and De Tre, 2009). We show the suitability of our proposal,
testing it in the field of data privacy. To our knowledge there is no similar work
to provide supervised learning for parametrized record linkage in the literature.

The paper is organized as follows. Section 2 introduces two distance func-
tions based on the weighted mean and the OWA operator that we will use as a
record linkage. In Section 3 we describe our approach to the supervised learning
of parameters for the distance function. The experiments and validation of our
proposal are described in Section 4. Finally, Section 5 concludes the paper.

2. On record linkage approaches

Given two different data files, record linkage algorithms link each record of one
file with another in the other file that is presumed to correspond to the same
entity. For example, when record linkage is applied to a data file for customers
and a data file for sellers, it is presumed that the algorithm will deliver a list of
links establishing the sellers that are also customers.

Record linkage algorithms have been used for a long time for database inte-
gration. In addition, these algorithms have also been used in data protection to
evaluate the risk of a data protection method.

Different algorithms exist for record linkage. Two main families can be dis-
tinguished: probabilistic record linkage and distance based record linkage. We
detail these methods below.
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In the description we assume that we have two files, A and B, represented
as A = (a1, ..., aN ) and B = (b1, ..., bN), respectively. Then, a record linkage
algorithm will consider pairs of records (ai, bj), each record being described
in terms of a set of variables. We will define V A

1 , . . . , V A
n and V B

1 , . . . , V B
n to

denote the set of variables of file A and B, respectively. Also, we will express
the values of each variable of a record i as ai = (V1(ai), . . . , Vn(ai)) and bi =
(V1(bi), . . . , Vn(bi)).

In this paper, we consider that the two data files are described in terms of
the same variables and that variables are aligned.

Probabilistic record linkage. This approach for record linkage assigns an
index to each pair of records (ai, bj) with ai ∈ A and bj ∈ B. Then, using
two thresholds, pairs are classified as either a linked-pair, an unlinked pair,
or a clerical pair.
The index is computed in terms of probabilities, and the thresholds are
computed taking into account the conditional probabilities of false posi-
tives and false negatives.

Distance-based record linkage. This approach links each record in A to
the closest record in B. The closest record is defined in terms of a distance.

Both approaches have been tested extensively in the area of data privacy to
evaluate the disclosure risk of protected data.

In probabilistic record linkage, the parameters of the method are determined
using the expectation-maximization algorithm. Determining the weights in this
way has the advantage of only requiring two parameters, corresponding to the
probabilities of false positives and false negatives, as mentioned above. All other
probabilities and values are obtained automatically from the data and these two
probabilities.

In distance-based record linkage, the determination of parameters is not so
easy. The main point is the definition of a distance. Nevertheless, different
distances can be defined, each yielding different results. Different distances
have been considered and tested in the literature. We review them below. To
make things easier, we will use the notation a and b when referring to a concrete
record ai or bi from their respective files, A or B.

Euclidean (DBRL1): The Euclidean distance is used for attribute-standar-
dized data. Accordingly, given the notation above, the distance between
two records a and b is defined by:

d(a, b)2 =

n
∑

i=1

(

Vi(a) − V A
i

σ(V A
i )

−
Vi(b) − V B

i

σ(V B
i )

)2

where σ(V A
i ) is the standard deviation of V A

i and V A
i is the average of all

the values that the variable V A
i takes.
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Euclidean (DBRL2): This is an alternative definition, also based on the Eu-
clidean distance. In this case, the Euclidean distance is used for attribute-
standardized data. Formally, the distance is defined as follows:

d(a, b)2 =

n
∑

i=1

(

Vi(a) − Vi(b)

σ(V A
i − V B

i )

)2

.

Mahalanobis (DBRLM): The Mahalanobis distance is used and applied to
the original data with no standardization:

d(a, b)2 = (a − b)′[V ar(V A) + V ar(V B) − 2Cov(V A, V B)]−1(a − b)

where V ar(V A) is the variance of attributes V A, V ar(V B) is the variance
of attributes V B and Cov(V A, V B) is the covariance between attributes
V A and V B. In this equation a′ corresponds to the transpose of vector a.
The computation of Cov(V A, V B) poses one difficulty: how records in A
are lined up with records in B to compute the covariances. Two approaches
have been considered in the literature.

DBRLM-COV In a worst case scenario, it would be possible to know
the correct links (a, b). Therefore, the covariance of attributes might
be computed with the correct alignment between records.

DBRLM-COV0 It is not possible to know a priori which are the correct
matches between pairs of records. Therefore, any pair of records
(a, b) are feasible. If any pair of records (a, b) are considered, the
covariance is zero.

Kernel (KDBRL): A kernel-distance is considered. That is, instead of com-
puting distances between records (a, b) in the original n dimensional space,
records are compared in a higher dimensional space H . Thus, let Φ(x)
be the mapping of x into the higher space. Then, the distance between
records a and b in H is defined as follows:

d(a, b)2 = ||Φ(a) − Φ(b)||2 = (Φ(a) − Φ(b))2 =

= Φ(a) · Φ(a) − 2Φ(a) · Φ(b) + Φ(b) · Φ(b) =

= K(a, a) − 2K(a, b) + K(b, b)

where K is a kernel function (i.e., K(a, b) = Φ(a) · Φ(b)).

Experiments have been carried out for the kernel functions of the form
K(x, y) = (1 + x · y)d for d > 1. Note that with d = 1, the kernel record-
linkage reduces to the distance-based record linkage with the Euclidean
distance.

Taking all this into account, the distance between a and b is defined as:

d(a, b)2 = K(a, a) − 2K(a, b) + K(b, b)

with a kernel function K.
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In this paper we consider a variation of the Euclidean distance. On the one
hand we consider the use of the OWA operator to aggregate partial distances,
and on the other, we consider a weighted distance.

2.1. A parametric distance for record linkage

It is well known that the multiplication of the Euclidean distance by a constant
will not change the results of any record linkage algorithm. Due to this, we can
express the distance DBRL1 given above as a weighted mean of the distances
for the attributes.

In a formal way, we redefine the DBRL1 as follows:

d(a, b)2 =

n
∑

i=1

1

n

(

Vi(a) − V A
i

σ(V A
i )

−
Vi(b) − V B

i

σ(V B
i )

)2

Now, defining

di(a, b)2 =

(

Vi(a) − V A
i

σ(V A
i )

−
Vi(b) − V B

i

σ(V B
i )

)2

we can rewrite this expression as

d(a, b)2 = AM(d1(a, b)2, . . . , dn(a, b)2),

where AM is the arithmetic mean AM(c1, . . . , cn) =
∑

i ci/n. See e.g. Miya-
moto and Suizu (2003), Chiang and Hao (2003) for details on kernel functions.

In general, any aggregation operator C might be used:

d(a, b)2 = C(d1(a, b)2, . . . , dn(a, b)2).

From this definition, it is straightforward to consider a weighted version
of the DBRL, and also a variation of it based on the OWA operators. Their
definition is as follows.

Definition 1 Let p = (p1, . . . , pn) be a weighting vector (i.e., pi ≥ 0 and
∑

i pi = 1), and given two records a and b. Then,

• the weighted distance is defined as:

d2WMp(a, b) = WM(d1(a, b)2, . . . , dn(a, b)2),

where WM = (c1, . . . , cn) =
∑

i pi · ci.

• the OWA distance is defined as:

d2OWAp(a, b) = OWA(d1(a, b)2, . . . , dn(a, b)2),

where OWA = (c1, . . . , cn) =
∑

i pi · cσ(i) with σ defining a permutation
of {1, . . . , n} such that cσ(i) ≥ cσ(i+1) for all i > 1.
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The interest of the first variation is that we do not need to assume that all
the attributes are equally important in the re-identification. This would be the
case if one of the attributes is a key-attribute. In this case, the corresponding
weight would be assigned to one and all the others to zero. Such an approach
would lead to 100% of re-identifications.

Moreover, as we will see later, this definition permits us to apply a supervised
learning approach to determine the parameters of the method. In this way, we
can tune the distance to have a better performance.

The interest of the second definition based on the OWA operator is that while
the weighted mean permits to assign relevance to attributes, the OWA (because
of the ordering σ) permits to assign relevance to either larger or smaller values.
In this way, we might give importance to extreme values or central values. Note
that extreme values might represent outliers, and in the case of re-identification
algorithms, such values might be useful for achieving a better performance.

3. Supervised learning for record linkage

The goal of this paper is to determine the best weights for achieving the best
possible performance in record linkage. To do so, we assume that a particular
parameterized distance is used and consider the problem of finding the optimal
weights for such parameterization.

In this section we describe a supervised learning approach for the determina-
tion of such weights. Then, in the next section we will describe some experiments
to validate our approach. To make the experiments we consider an application
in data privacy. It consists in using a data file, and a protected version of it.
Then, the goal of an intruder would be to link own original records (say, A)
with the records of the public but protected file (say, B).

In the rest of this section we will use the notation A and B, where A stands
for the original file and B for the protected and public file. In the supervised
approach we assume that we know the correct links, and this knowledge is used
to determine the optimal weights. In the real world, this scenario would occur
if an agency wanted to have a maximum bound of an estimation of disclosure
risk before releasing a file.

For the sake of simplicity, we presumethat eachrecord ofA, Ai =(a1, . . . , aN ),
is the original record of B, Bi = (b1, . . . , bN ). That is, files are aligned. Then, if
Vk(ai) represents the value of the kth variable of the ith record, we will consider
the sets of values d(Vk(ai), Vk(bj)) for all pairs of records ai and bj .

Then, the optimal performance of record linkage using an aggregation oper-
ator C is achieved when the aggregation of the values d(Vk(ai), Vk(bi)) for all k
is smaller than the aggregation of the values d(Vk(ai), Vk(bj)) for all i 6= j, i.e.
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C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) < (1)

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))

for all i 6= j.

Note that the proposed technique uses the same number of variables to link
one file to another. This does not imply a constraint on the initial dataset,
but on the number of variables one chooses to make the linkage. The fact
that the variables are lined up is just an assumption we make to simplify the
explanation, but in a very general case one could check all combinations of
variables to see which yields a better linkage (with the computational cost that
this might imply). It is important to note, however, that most record linkage
techniques do rely on the use of the same variables, because they are already
known or can be easily guessed. In our case scenario, since we rely on the
specific application of record linkage for evaluating the disclosure risk in data
privacy, we know the correct alignment of the variables and thus we can avoid
the combinatorial problem.

Although we focus our work on numeric data, other types of data (cate-
gorical, sequential, . . . ) could be used as long as we are able to define (and
compute) a distance function between the attribute values.

We considered two approaches for learning the weights. We describe them
below.

3.1. First approach: minimizing the errors

The first approach consists in transforming Equation (1) into (2) using a new
variable Y(i,j) to solve the inconsistencies in the data, and then it is expected
that the variable will be as small as possible:

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))− (2)

C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + Y(i,j) > 0

for all i 6= j.

We formalize the problem as the minimization of the error Y(i,j), taking into
account the constraints. However, besides the equation above, we require the
weights to be positive and add to one as usual in the weighted mean. Note
that these requirements about the weights are also mandatory if the resulting
expression has to be a distance (positive and monotonic). In this way we obtain
the following optimization problem:

Minimize :

N
∑

i=1

N
∑

j=1

Y(i,j)
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Subject to :

N
∑

i=1

N
∑

j=1

P (d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−

P (d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + Y(i,j) > 0

Y(i,j) > 0 (3)
n
∑

s=1

ps = 1

ps ≥ 0.

Note that in this optimization problem, we minimize the error in the sense that
the error of each constraint, Y(i,j), is made as small as possible.

Although this formalization seems natural and it is expected that the number
of violated constraints be small, the approach does not work properly. Note
that a single record j violating the constraint for record i, even with a small
Y(i,j), implies that record i is incorrectly linked. So, in the case of all records i
having just one record j violating a constraint would result in all records being
incorrectly linked.

This caused that minimal solutions with respect to small Y(i,j) resulted in
a large number of incorrect links. In fact, the number of correct links was less
than the number of links when we just used the standard (non-weighted) record
linkage with the Euclidean distance.

To solve this problem, we developed a second approach. It is explained in
the next section.

3.2. Second approach: minimizing the number of incorrect links

As we have seen above, the first approach does not work as expected. For this
reason, we considered another solution. In this one, we consider a variable K
for each block. We define a block as the set of all the distances between one
record of the original data and all the records of the protected data. Therefore,
we have as many K as the number of rows of our original file. Besides, we
need a constant C that multiplies K to avoid the inconsistencies and satisfy the
constraint.

The rationale of this approach is as follows. The variable K indicates, for
each block, if all the corresponding constraints are satisfied (K = 0) or not (K =
1). Then, we want to minimize the number of blocks non compliant with the
constraints. Then, in this way, we can find the best weights that minimize the
number of violations, or, in other words, we can find the weights that maximize
the number of re-identifications between the original and protected data.



Supervised learning for record linkage through weighted means and OWA operators 1019

Using this variable, the constraint is defined as follows:

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))− (4)

C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0

for all i 6= j.
In this definition we have a constant C. This constant is used to express the

minimum distance we require between the correct link and the other, incorrect
links. It is used in the same way as variable Y(i,j) in Equation (2), but now it
can be further parameterized. The bigger it is, the more the correct links are
distinguished from the incorrect links.

Using the constraints of the form above, and taking into account what has
been explained before, the problem is as follows:

Minimize :

N
∑

i=1

Ki

Subject to:

N
∑

i=1

N
∑

j=1

P (d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−

P (d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0

Ki ∈ {0, 1} (5)
n
∑

s=1

ps = 1

ps ≥ 0.

4. Experiments

For our experiments we have used the “Census” dataset, which contains 1080
records with 13 numerical attributes, and has been extensively used in other
works (Domingo-Ferrer et al., 2006; Laszlo and Mukherjee, 2005; Domingo-
Ferrer and Torra, 2005; Yancey et al., 2002; Domingo-Ferrer et al., 2001). We
have tested the supervised learning approaches with the original dataset and
three different protected versions of the same dataset. The protected datasets
are generated by microaggregation of the original one (see Section 4.1 for a de-
scription of microaggregation). As outlined in Section 3, we consider a possible
intruder whose goal is to link the records of the public and protected dataset
with own original records.

We have tested both the weighted mean and the OWA operator based dis-
tances between records (as defined in Section 2.1). All tests have been per-
formed using R and IBM ILOG CPLEX. R (R, 2010) (version 2.9.2) is a GNU
project that provides a language and environment for statistical computing.
On the other hand, the IBM ILOG CPLEX (IBM, 2010) is a mathematical



1020 V. TORRA, G. NAVARRO-ARRIBAS, D. ABRIL

programming optimizer that enables analytical decision support for improving
efficiency, reducing costs, and increasing profitability. Specifically we have used
the simplex (Dantzig, 1963) optimizer algorithm that ILOG CPLEX version
12.1 provides.

The next section describes the microaggregation technique used to protect
the datasets, and then we show the results of our experiments.

4.1. Microaggregation

Microaggregation is a statistical disclosure control technique, which provides
privacy by means of clustering the data into small clusters and then replacing
the original data by the centroids of the corresponding clusters.

Privacy is achieved because all clusters have at least a predefined number of
elements, and therefore there are at least k records with the same value. Note
that all the records in the cluster replace a value by the value in the centroid of
the cluster. The constant k is a parameter of the method that controls the level
of privacy. The larger the k, the more privacy we have in the protected data.

Microaggregation was originally (Defays and Nanopoulos, 1993) defined for
numerical attributes, but later extended to other domains, e.g., to categorical
data in Torra (2004) (see also Domingo-Ferrer and Torra, 2005), and in con-
strained domains in Torra (2008).

From the operational point of view, microaggregation is defined in terms of
partition and aggregation:

• Partition. Records are partitioned into several clusters, each of them
consisting of at least k records.

• Aggregation. For each of the clusters a representative (the centroid) is
computed, and then original records are replaced by the representative of
the cluster to which they belong to.

From a formal point of view, microaggregation can be defined as an opti-
mization problem with some constraints. We give a formalization below using
uij to describe the partition of the records in the sensitive data set X . That is,
uij = 1 if record j is assigned to the ith cluster. Let vi be the representative of
the ith cluster, then a general formulation of microaggregation with g clusters
and a given k is as follows:

Minimize SSE =

g
∑

i=1

n
∑

j=1

uij(d(xj , vi))
2

Subject to

g
∑

i=1

uij = 1 for all j = 1, . . . , n

2k ≥

n
∑

j=1

uij ≥ k for all i = 1, . . . , g

uij ∈ {0, 1}.
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For numerical data it is usual to require that d(x, v) be the Euclidean dis-
tance. In the general case, when attributes V = (V1, . . . , Vs) are considered, x
and v are vectors, and d becomes d2(x, v) =

∑

Vi∈V
(xi − vi)

2. In addition, it
is also common to require for numerical data that vi be defined as the arith-
metic mean of the records in the cluster, i.e., vi =

∑n

j=1 uijxi/
∑n

j=1 uij . As
the solution of this problem is NP-Hard (Oganian and Domingo-Ferrer, 2000)
when we consider more than one variable at a time (multivariate microaggre-
gation), heuristic methods have been developed. A popular heuristic algorithm
for multivariate microaggregation is MDAV (Domingo-Ferrer and Mateo-Sanz,
2002) (Maximum Distance to Average Vector). The implementation of MDAV
for categorical data is given in Domingo-Ferrer and Torra (2005).

Note that when all variables are considered at once, microaggregation is a
way to implement k-anonymity (Samarati, 2001; Sweeney, 2002).

4.2. Results

The results are obtained by linking the original file A with a protected file Bj .
Each file contains 13 variables, V1(ai), . . . , V13(ai) for all records ai in A, and
V1(bi), . . . , V13(bi) for all records bi in Bj . And the variables are aligned between
A and B.

We consider three different protected files:

• B1: microaggregation of A taking the variables in groups of three, obtain-
ing four groups of three variables and another with just the last variable,
and with k = 4.

• B2: microaggregation of A in two groups of variables (one with 5 and
another with 8), and k = 4.

• B3: microaggregation of A in two groups of variables (one with 6 and
another with 7), and k = 20.

We have tested our learning approach with three different training sets com-
posed of 100, 200, and 300 records for each pair of files (A, Bj). The training
sets are denoted T100, T200, and T300, respectively.

As we have outlined before, our first approach, based on minimization of the
errors (as described in Section 3.1), produces bad results. Just as an example
consider the results from Table 1. There we can see the proportion of correctly
linked records (1 means 100% of records correctly linked) with our approach
using the weighted mean (d2WM) as compared to the record linkage using the
normalized arithmetic mean DBRL1.

As shown, the results are worse than using a standard record linkage with
the distance DBRL1.

However, if we use our second approach, based on minimization of the num-
ber of incorrect links from Section 3.2, we can achieve better results. Table 2
compares our approach for the weighted mean d2WM based record linkage with
the DBRL1, and Table 3 compares the OWA operator based distance linkage
d2OWA with the DBRL1.
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Table 1. Approach 1 with the weighted mean

Training set d2WM DBRL1

B1

T100 0.55 1

T200 0.56 1

T300 0.5766667 0.9933

Table 2. Approach 2 with the weighted mean

Training set d2WM DBRL1

B1

T100 1 1

T200 1 1

T300 1 0.9933

B2

T100 0.96 0.94

T200 0.965 0.95

T300 0.9467 0.93

B3 T100 0.76 0.73

Table 3. Approach 2 with the OWA operator

Training set d2OWA DBRL1

B1

T100 1 1

T200 1 1

T300 1 0.996

B2

T100 0.95 0.94

T200 0.96 0.95

B3
T100 0.75 0.73

T200 0.64 0.595

In both cases our approach using either the d2WM with d2OWA performs
better than the standard record linkage using the Euclidean distance (DBRL1).
Although the difference is not very big, it is clear that we always achieve a
higher percentage of correct links. If we compare d2WM and d2OWA, we can
see that d2WM performs better than d2OWA, with a very small difference.

The weights obtained by our methods can be a useful tool for identifying
the relevant (or irrelevant) variables for linking records. Moreover, in the field
of data privacy, they can constitute a very important indicator of how each
variable is protected. Variables with a high weight are more sensitive, since
they can be used for the re-identification of records. Ideally, a good protection
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method should end up with a uniform distribution of the weights, otherwise if
the weights are concentrated in few variables, record linkage can be performed
from only these variables without losing much accuracy. It also means that the
intruder only needs information about such variables for attacking efficiently
the database.

Table 4 shows the weights for the case of the weighted mean. As an example
consider the case of B1, where some variables can be completely ruled out in the
record linkage. These variables with weights close to 0 provide very low (or none)
use for the linkage. Moreover, we can also see that B1 has been microaggregated
in groups of three variables. For each group there is always one variable with
a larger weight, and the general weight of the record is distributed over each
group. The weights for the OWA operator based record linkage are shown in
Table 5, where we can see that the distribution of weights is more concentrated
on specific positions. In general, it shows that the variables with lower values
are the ones with the largest importance.

The general interpretation of the weights is, however, highly dependent on
the scenario and the data itself (what are we linking).

Table 4. Weights obtained for d2WM

B1

T100 0.12 0.00 0.09 0.00 0.00 0.62 0.05 0.00 0.00 0.00 0.12 0.00 0.00

T200 0.13 0.00 0.10 0.00 0.00 0.06 0.17 0.45 0.00 0.00 0.11 0.00 0.00

T300 0.00 0.00 0.01 0.00 0.00 0.00 0.31 0.05 0.02 0.00 0.23 0.00 0.37

B2

T100 0.20 0.08 0.14 0.00 0.26 0.00 0.09 0.04 0.00 0.12 0.00 0.00 0.06

T200 0.03 0.09 0.07 0.04 0.00 0.06 0.02 0.05 0.13 0.00 0.11 0.00 0.39

T300 0.02 0.08 0.05 0.04 0.00 0.05 0.05 0.20 0.10 0.00 0.05 0.04 0.32

B3 T100 0.06 0.03 0.04 0.11 0.03 0.02 0.02 0.02 0.45 0.00 0.08 0.00 0.13

Table 5. Weights obtained for d2OWA

B1

T100 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00

T200 0.00 0.00 0.00 0.062 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93

B2

T100 0.01 0.12 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.56 0.00

T200 0.07 0.00 0.015 0.07 0.19 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.00

B3

T100 0.09 0.08 0.027 0.14 0.00 0.00 0.26 0.41 0.00 0.00 0.00 0.00 0.00

T200 0.03 0.04 0.088 0.06 0.01 0.024 0.00 0.06 0.00 0.00 0.21 0.32 0.15

5. Conclusions

In this paper we have introduced a parameterization of distance-based record
linkage by means of extending the Euclidean distance, used in standard record
linkage, with the weighted mean and the OWA operators, which allows for the
parameterization of the distances. Moreover, we have presented a supervised
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learning approach to determine the optimum weights for such proposed dis-
tances, in order to achieve a better performance in the linkage process between
two datasets.

Our experiments, in the field of data privacy, show that the linkage is bet-
ter when compared with the standard record linkage based on the Euclidean
distance. Although the improvement is not very big, we think that in some
particular circumstances this difference can be more important. For example,
in cases where there is one variable that clearly provides more information for
the linkage than the rest. Thus, e.g., in the context of data privacy, it is pos-
sible to use different protection degree for each variable. Variables, which are
less protected, are more likely to provide more information, so weighing them
appropriately can lead to better linkages.

As a result of our approach we also obtain the weight associated to each
variable, which is an indicator of the importance (or lack of it) of the variable
for the record linkage. This last feature has also important consequences in data
privacy. We can identify the variables that provide more information for the
linkages, in other words, the variables that have a greater disclosure risk. This
fact can help, for example, statistical agencies in evaluating the protection level
to be applied to each variable.

As a future work we will extend our proposal to record linkage of other type
of data. To that end, we will investigate the use of different distances such as
the Jaro-Winkler distance for categorical data or distances on time series for
sequential data.
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