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This method is a combination of methods no. 2 and 3. The initial size of
NDM is encoded in a chromosome with data. Then, AEP has a potential to
modify the size of NDM through using operations ADDN and DELN (Fig. 12;
an example of AEP created in the experiments with method no. 4 is presented in
Fig. 16). The operation ADDN adds new neurons to ANN. It does not destroy
connections that already exist in the network. The task of DELN is to remove
a single neuron from ANN. The number of the neuron is a parameter of the
operation. Elimination of the neuron practically takes place through removing
corresponding row and column from NDM. As before, all neurons separated
from the output of ANN are removed from it.

5. Experiments

In order to compare the methods presented above, experiments on the predator-
prey problem were carried out. During the tests, the task of ANNs was to control
a set of cooperating predators whose common goal was to capture a fast moving
prey. The experiments were performed in a configuration with one prey and
three chasing predators. The prey behaved according to a simple algorithm,
whereas the predators were controlled by a single ANN.

5.1. Environment

Figure 13. Artificial world in which the task of predators is to capture prey

The predators and the prey lived in a common environment. We used 20x20
square without obstacles to represent the environment (Fig. 13). In order to
ensure infinite space for the predators and prey and for their struggle, we made
the environment open at each side. This means that every attempt to move
beyond the upper, lower, right or left border of the square caused the object
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making such an attempt to move to the opposite side of the environment. As
a result, a simple strategy of predators consisting in chasing the prey did not
work. In such a situation, the prey in order to evade predators, could simply
escape up, down, right or left.

5.2. Residents of artificial world

In our experiments, three predators and one prey coexisted in the artificial
environment. The predators were controlled by ANN produced by AEP. They
could select five actions: to move in North, South, West, East direction or to
stand still. The length of step made by every predator was 1 while the step
made by the prey was equal either 2 or 1. In order to capture the prey, the
predators had to cooperate. Their speed was either two times lower or the same
as speed of the escaping prey so they could not simply chase the prey to grasp
it. We assumed that the prey was captured if the distance between it and the
nearest predator was lower than 2.

In the experiments, we used two types of prey, i.e. a simple prey and an
advanced prey. With regard to the simple prey, it was controlled by a simple
algorithm which forced it to move directly away from the nearest predator but
solely in the situation when distance between it and the nearest predator was
lower or equal 5. In the remaining cases, i.e. when no predator was closer to
the prey than the assumed distance, the prey did not move. The prey, when
running away, could select four actions: to move in North, South, West or East
direction. The strategy of the simple prey is presented below:

πsimple(s) =







StandStill if d(p, s) > 5 ∀p ∈ P

arg max
a∈A

D
(

s, a, arg min
p∈P

d(p, s)
)

otherwise
(1)

where
P - set of predators,
A - set of actions of prey (A = {StandStill, North, South, West, East}),
d(p, s) - distance between prey and predator p in state of environment s,
D(s, a, p) - distance between prey and predator p in the state of environment,
which is the direct consequence of action a performed by prey in state s.

Making decision, the advanced prey, unlike its simpler counterpart, always
took into consideration the location of all predators situated close to it. Actions
performed by the advanced prey always maximized the average distance between
the prey and all predators that were close to it. Other aspects of behavior of
the advanced prey, i.e. behavior away from the predators and actions which the
prey could perform in each step, were the same as in the case of the simple prey.
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The strategy of the advanced prey is presented below:

πadvanced(s) =







StandStill if d(p, s) > 5 ∀p ∈ P

arg max
a∈A

(

1
|P5(s)|

∑

p∈P5(s) D(s, a, p)
)

otherwise
(2)

where
P5(s) = {p ∈ P, d(p, s) ≤ 5}.

5.3. Neural controllers

NDMs generated during the experiments usually represented recurrent ANNs.
However, we decided that controllers used in the experiments should have a feed-
forward architecture. In order to obtain such ANNs, we used only elements of
NDMs localized in their upper parts. The remaining elements were neglected
during the process of ANN construction.

ANNs contained three types of neurons: radial, sigmoid and linear neu-
rons. Information about the type of neuron was located in an additional column
of NDM. Each matrix included three additional columns. The remaining two
columns contained information about bias and value of one parameter of each
neuron.

ANNs had usually six inputs and three outputs (in some cases ANNs did
not require so many inputs to effectively control the predators). The number
of outputs corresponded to the number of predators. In turn, the number of
inputs was twice the number of predators. Each output gave commands to one
predator. In turn, each input informed about vertical or horizontal distance
between the prey and one of the predators.

5.4. Parameters of evolutionary process

In all the experiments, the evolution of operations and data proceeded according
to the canonical GA. All chromosomes used in the experiments consisted of 7-bit
blocks of genes. Every chromosome-operation consisted of five blocks of binary
genes (one block for code of an operation and the remaining four blocks for
parameters of the operation). The list of applied operations is presented at the
end of the paper (see Appendix 1). Chromosomes-data could change the length
during consecutive co-evolutionary cycles. In order to make such a change
possible, GA that processed a population with data, in addition to crossover
and mutation, used a cut-splice operator (Fig. 14). The implementation of the
crossover always produced an offspring of the same length as parents. The cut-
splice operator which was always activated after the crossover and mutation
modified the size of a chromosome through addition or removal of a single block
of genes (single data) from the same end of the chromosome. In the experiments,
we assumed that the chromosomes-data can maximally contain 20 data, i.e. 20
7-bit blocks of genes. Each use of an excessive number of data caused drastic
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Figure 14. Evolutionary operators used in experiments: one-point crossover
(chromosomes could be cut in two only between two separate blocks of binary
genes, e.g. between two parameters of operation or between two integers in
data), per-bit mutation, and cut-splice

decrease in fitness of AEP. In our experiments, we assumed a maximal number
of operations which could be possessed by each AEP: 12 operations. Initially,
every AEP contained one operation and one set of data from two different
populations. Consecutive populations with operations were added after every
5000 co-evolutionary cycles if the generated AEPs were not able to achieve
progress in performance within this period. Populations with operations and
data could also be replaced by newly created populations when the contribution
of a substituted population to created AEPs was considerably less than the
contribution of the remaining populations. The contribution of a population
was measured as average fitness of individuals belonging to that population.
The remaining values essential for the experiments are presented below:

• population size: 20 individuals (operations and data),
• maximum number of co-evolutionary cycles: 200 000 (In the case of the

classic variant of AE, we dealt with four separate evolutionary attempts.
For the first 50 000 cycles, AEPs operated on NDMs of the minimal ac-
ceptable size 9 input and output neurons. When they could not generate
any successful ANN1 within this period, all NDMs were augmented by one

1successful ANN is an ANN which resulted in capturing the prey in all testing scenarios



Optimal size neural networks in Assembler Encoding 1207

column and row and a next attempt consisting of 50 000 cycles started.
This process was maximally repeated four times, i.e. over 200 000 cycles.
In this way, the classic variant of AE could produce ANNs with the max-
imum number of neurons equal to 13, i.e. 4 hidden neurons and 9 input
and output neurons. In the case of the methods discussed in the paper,
evolutionary settings did not change over all 200 000 cycles),

• maximum size of NDMs (except for the classic variant of AE): 30 rows
and 33 columns (which means 9 input and output neurons, and 21 hidden
neurons),

• crossover probability: 0.7 (operations and data),
• per-bit mutation probability: 0.05 (operations), 0.01 (data),
• chromosome extension probability: 0.1 (exclusively in chromosomes-data).

5.5. Evaluation process

In order to evaluate ANNs, we used twenty different scenarios. The tests pro-
ceeded in the following way. At first, each ANN was tested in the scenario no. 1.
If the predators could not capture the prey during some assumed period, the test
was stopped and ANN was assigned appropriate evaluation, depending on the
distance between the prey and the nearest predator. However, if the predators
grasped the prey, they were put to a test according to a next scenario. During
the experiments, we assumed that the predators could perform 100 steps before
a scenario was interrupted.

The scenarios differed in the initial position of the prey, in the length of
step of the prey and in the type of the prey applied (simple or advanced).
Consecutive scenarios were more and more difficult. At first, the predators had
to capture the simple prey that was as fast as them. The predators, having
passed the first exam, had to pit against the simple prey that was twice faster
than the predators. In the next step, the speed of the prey was decreased once
again. However, this time the predators had to face the advanced prey which
took better decisions than its predecessor. In the last stage, the predators which
coped with all earlier scenarios had to capture the advanced, fast prey. In all
the scenarios, starting positions of all three predators were the same (Fig. 15):
they always started from position (0,0). All of the twenty scenarios are specified
below:

• Scenario no 1,6,11,16: starting position of prey (5,5) – position 1,
• Scenario no 2,7,12,17: starting position of prey (15,5) – position 2,
• Scenario no 3,8,13,18: starting position of prey (5,15) – position 3,
• Scenario no 4,9,14,19: starting position of prey (15,15) – position 4,
• Scenario no 5,10,15,20: starting position of prey (10,10) – position 5,
• Scenario no 1-5: simple prey, prey step = 1,
• Scenario no 6-10: simple prey, prey step = 2,
• Scenario no 11-15: advanced prey, prey step = 1,
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• Scenario no 16-20: advanced prey, prey step = 2 (example behavior of
predators and prey in scenarios no. 18 and 20 is presented in Fig. 17).

Figure 15. Initial locations of prey and predators

Figure 16. (a) Example of AEP, which created successful ANN – method no. 4,
(b) encoded form of AEP presented in point (a), (c) NDM generated by AEP
presented in points (a) and (b)
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(a)

(b)

Figure 17. Example of behavior of predators and prey in scenario no. 20 (a)
and scenario no. 18 (b) (neuro-controller: ANN whose NDM is presented in
Fig. 16c). Circles indicate initial positions of predators and prey (black circle
prey, circle with vertical stripes predators), round symbols with diagonal lines
denote final positions, arrowed lines indicate directions of movement (solid line
prey, dashed or dotted lines predators), whereas black boxes show the time of
appearance of individuals in a given place
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To evaluate ANNs, the following fitness function was used:

f(ANN) =

n
∑

i=0

fi (3)

fi =















dmax − min
p

di(p), prey not captured in ith scenario

fcaptured + (100 − mi)/a, prey captured in ith scenario

0, prey not captured in previous scenario

(4)

where
fi - reward received in ith scenario
di(p) - distance between prey and predator p in the end state of ith scenario
dmax - maximum distance between two points in the environment
fcaptured - reward for grasping prey in a single scenario (fcaptured = 100)
mi - number of steps to capture prey (mi < 100)
a - this value prevented the situation, in which partial success was better than
success in all scenarios
n - number of scenarios (n = 20).

The total fitness value of each ANN is a sum of rewards from scenarios in
which ANN had taken part. The reward for a scenario depends on a chase
result. In the case of success, ANN obtains extra fitness for grasping the prey
and additionally a reward reversely proportional to the number of steps which
the predators had to make to capture the prey. In the case of failure, ANN
obtains fitness proportional to the distance between the prey and the nearest
predator.

5.6. Experimental results

To compare individual methods proposed in the paper, their learning abilities,
i.e. abilities to produce ANNs effective in learning tasks, and speed were mea-
sured. ANNs generated during the experiments were not tested in terms of
generalization performance. An ability of ANNs to generalize knowledge is a
quality indicator of the whole method but not of individual modifications. The
shape of ANNs produced in AE depends on operations used by AEPs. They
form NDMs and thereby ANNs. In the experiments, all the methods could pro-
duce AEPs equipped with the same types of operations (except for operations
whose task is to change the size of NDMs; the influence of such operations is,
however, restricted to adding or removing neurons separated from the rest of
ANN, they do not determine a structure of connections in ANNs, which mainly
influences the behavior of the networks) and there is no reason to think that
each of them could prefer different operations and thereby produce ANNs with
completely different characteristics. A feature distinguishing individual meth-
ods is their speed in creating effective ANNs but not ANNs themselves. For
that reason, the generalization tests were not carried out.
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Table 1. Results of experiments (1 - Average fitness of ANNs, 2 - % of successful
evolutionary attempts, i.e. attempts in which successful ANN was produced, 3 -
Average number of co-evolutionary cycles necessary to generate successful ANN)

Method Gradual
no. 1 no. 2 no. 3 no. 4 growth method

1 1988.5 2059.1 1996.3 2062.8 2073.2
2 84% 100% 92% 100% 100%
3 135428.5 93881.2 142085.7 111629.8 90886.2

In the experiments, whose results are included in Table 1, all the methods
presented in Section 4 were tested fifty times (each method was represented by
fifty ANNs, i.e. fifty evolutionary attempts were performed for each method).
For the comparison purposes, the method based on gradual growth of NDMs
was also tested. During the tests, it turned out that all the methods proposed in
the paper are able to prepare effective ANNs within the assumed learning time
(200,000 evolutionary generations). The only incompletely successful methods
(not all evolutionary attempts succeeded, i.e. ended in producing a successful
ANN) were methods no. 1 and no. 3. In the former case, the successful ANNs
were produced in 84% of evolutionary attempts, whereas in the latter one, the
result was somewhat better and it amounted to 92% of complete successes. In
the remaining cases, all the attempts were successful. As for the average fitness
of ANNs, results are similar to the ones presented above. Again, methods no. 1
and no. 3 turned out to be less effective than the remaining solutions. In both
cases, values close to 2000 were attained, meaning that ANNs were successful
in 19 scenarios, on average. Values above 2000 obtained in the remaining cases
indicate the complete success in all the fifty evolutionary attempts. With regard
to the speed in generating effective ANNs, the experiments showed that the
methods proposed in the paper are in most cases slower than the one used in
the classical variant of AE. The only exception is method no. 2, which was almost
as fast as the gradual growth of ANNs. It seems that the main reason of such a
state of affairs is the fact that most methods proposed in the paper (except for
method no. 1) enable AEPs to operate on NDMs of a varied size during all the
evolutionary process. In this way, their AEPs have a more difficult task than
the counterparts from the gradual growth method. AEPs, which are effective
for NDMs of some fixed size, are completely useless for NDMs of a different size.
In the gradual growth method, the objective of all AEPs is only to fill in NDMs
with values. Since all NDMs are of equal size, there is no need for the evolution
and AEPs to address this problem. Method no. 1, like the gradual growth
method, does not change the size of NDMs during the evolution. However, this
method usually uses NDMs of a larger size than NDMs from the remaining
methods. The size of NDMs seems to be the main reason of worse results of the
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method. Determining connectivity in ANN including, say, 30 neurons is simply
much more difficult than doing so in ANN with, say, 10 neurons.

In sum, the experiments showed that the methods proposed in the paper
are not as fast as the gradual growth of NDMs and they rather should not be
used to create small ANNs and ANNs whose number of neurons is known or
roughly known in advance. However, in most real problems, the size of ANN is
not known beforehand. In such a case, the methods proposed in the paper can
be used. All of them can be applied either to determine a rough size of ANN
or to find a final solution. Using the method based on the gradual growth of
NDM, in this situation, would probably prolong the time necessary to generate
a satisfactory solution.

However, an interesting idea seems to be to combine the gradual growth
method with the methods proposed in the paper. The latter methods, as men-
tioned above, could be used to determine a rough size of ANN. Then, the gradual
growth method would be activated. Its task would be to find the final form of
ANN. To test this idea, simple experiments were carried out. In these exper-
iments, all the proposed methods, except for method no. 1, were first used to
generate incompletely effective ANNs, i.e. ANNs of fitness greater than 1500
(the prey captured in at least 15 scenarios). In the next step, responsibility
for generating completely successful ANNs was shifted onto the gradual growth
method. Results of the experiments are summarized in Table 2. Since in all
the examined cases we achieved 100% of effectiveness, the table only compares
the speed of the solutions tested. Generally, it appeared that the combina-
tion of the methods yields positive results. In two cases out of the three, the
improvement in the speed in relation to the previous experiments was noted.
Noteworthy is the fact that in all the tests the size of NDMs, suggested by the
methods proposed in the paper, was sufficient to generate a successful ANN.
In no case, the gradual growth method had to enlarge NDMs and to start the
evolution from the beginning. Another issue worth mentioning is the degree of
improvement in the case of method no. 2. It seems that the main reason why
such result was accomplished is a way of combining method no. 2 and the grad-
ual growth method. In this case, all operations and data prepared by method
no. 2 were directly transferred further to a next evolutionary stage in which
the gradual growth method was used. Thus, the evolution did not start from a
random point but from a place indicated by method no. 2. Both methods use
the same set of operations so there was no obstacle to combine them in such a
way. To apply such a solution, it was only enough to omit information included
in chromosomes-data about size of NDMs. For the remaining methods, the ap-
proach above could not be used and the gradual growth method always had to
start from randomly generated operations and data. The main impediment, in
this case, was the use of operations ADDN and DELN. They are not used in
the gradual growth method, and so, applying a similar procedure as in the case
of method no. 2 was unfeasible.



Optimal size neural networks in Assembler Encoding 1213

Table 2. Results of additional experiments (1 - Average number of co-
evolutionary cycles necessary to generate successful ANN)

Method no. 2 Method no. 3 Method no. 4

1 47729.2 97611.9 85924.1

6. Summary

The paper compares methods whose main objective is to speed up AE when
large ANNs are required to be built. The experiments were carried out in
the predator-prey problem and they showed that for smaller ANNs, i.e. ANNs,
which, as it turned out, were sufficient to solve the problem mentioned, the
gradual growth method, i.e. the method used so far in AE, outperforms all the
methods proposed in the paper. However, the experiments also showed that a
part of the methods mentioned can be successfully combined with the classic
variant of AE. First, they are used to find a rough size of ANN. Then, the
gradual growth method is activated to complete the task of finding effective
ANN. The experiments revealed that such an approach can be equally effective
and, what is more important, can also be faster than the one used so far.
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Appendix A – List of operations used in experiments

CHG – see Fig. 3.

CHGC0 – see Fig. 3.

CHGC1 – Update of a certain number of elements in a column. Index of the
column, index of the first element in the column, the number of changed elements
and the new value for the elements, the same for all of them, are located in
parameters of the operation.

CHGC2 – Update of a certain number of elements in a column. The new value
of each element is a sum of the parameter of the operation and the current
value of the element. The second parameter of the operation is an index of
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the column. The third and fourth parameters of the operation determine the
number of changed elements and the index of the first element in the column to
be changed, respectively.

CHGC3 – A number of elements from one column are transferred to another
column. Both columns are indicated by the parameters of the operation. The
number of the transferred elements and the index of the first element in the
column transferred are also included in parameters of the operation.

CHGC4 – Update of a certain number of elements in a column. The new value
of each element is a sum of the current value of this element and the respective
value from memory of the program. The index of the column, the index of the
first element in the column, the number of changed elements, and the pointer
to data, where ingredients of individual sums are memorized, are located in
parameters of the operation.

CHGR0 – like CHGC0, but the update refers to the row of the matrix.

CHGR1 – like CHGC1.

CHGR2 – like CHGC2.

CHGR3 – like CHGC3.

CHGR4 – like CHGC4.

CHGM0 – Update of a block of elements. Elements are updated in columns, in
turn, one after another, starting from an element pointed by the parameters of
the operation. The number of changed elements and the place in the memory
where new values for elements are located are determined by parameters of the
operation.

CHGM1 – like CHGM0, but the new value of every element is a sum of its
current value and the parameter of the operation.

CHGM2 – like CHGM0, but the new value of each element is a sum of its
current value and the value from the memory part of a program. The number
of changed elements and the place in the memory where arguments of individual
sums are located are determined by the parameters of the operation.

JMP – see Fig. 4.




