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Abstract: In this work, we propose new candidates expected to
be limit points of Mahler measures of polynomials. The tool we use
for determining these candidates is the Expectation-Maximization
algorithm, whose goal is to optimize the likelihood for the given
data points, i.e. the known Mahler measures up to degree 44, to
be generated by a specific mixture of Gaussians. We will give the
mean (which is a candidate to be a new limit point) and the relative
amplitude of each component of the more likely gaussian mixture.
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1. State of the art

Recall that if P is a polynomial defined as

P (x) =

n
∑

k=0

akxk, ak ∈ C and an 6= 0,

then its Mahler measure (see Boyd, 1980, 1989; Mossinghoff, 1998) is defined to
be

M(P ) = |an|
n

∏

k=1

max(1, |αk|),

where the αk’s are the roots of P .
Initiated by Lehmer (1933) who, for polynomials P with integer coefficients,

provided the smallest values of M(P ) for deg(P ) = 2, 3, and 4, and for recipro-
cal P with deg(P ) = 2, 4, 6 and 8, computations on Mahler measure were con-
tinued by Boyd (1980, 1981, 1989) who found all reciprocal P with M(P ) ≤ 1.3
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and degree up to 20, as well as those with M(P ) ≤ 1.3 and degree up to 32
with height 1. Boyd’s lists were extended by Mossinghoff (1998) up to degree
24 (up to degree 40 for height 1 polynomials). Flammang, Grandcolas and Rhin
(1999) proved the completeness of these lists, and Flammang, Rhin and Sac-
Épée (2006) provided all polynomials P such that M(P ) ≤ θ0 (θ0 ≃ 1.3247 . . .

is the smallest Pisot number) with deg(P ) ≤ 36, and all polynomials P such
that M(P ) ≤ 1.31 and deg(P ) ≤ 40.

On Mossinghoff’s web site (see http://www.cecm.sfu.ca/ mjm/Lehmer/lists),
we can find a list of all known noncyclotomic and irreducible polynomials with
integer coefficients and degree at most 180 and Mahler measure below 1.3, in-
cluding polynomials provided by P. Lisonek (2000), G. Rhin and J.-M. Sac-Epée
(2003), and Mossinghoff, Rhin, and Wu (2008) who proved the completeness of
the list up to degree 44. For each polynomial, its Mahler measure is available.

One of the important questions concerning the Mahler measure is the follow-
ing: What are the small limit points of the Mahler measure of the set of algebraic
integers ? In a recent paper, Boyd and Mossinghoff (2005) gave a list of 48 such
limit points less than 1.37. We note that there are only two limit points less
than 1.3, namely 1.255 . . . and 1.285 . . . All are obtained by values of Mahler
measures of polynomials in several variables of different types. We may add the
following question known as Lehmer’s problem: Is 1 a limit point of the set of
the Mahler measures? The smallest value of the Mahler measure that is known
is 1.176 . . . given by the polynomial X10+X9−X7−X6−X5−X4−X3+X+1,
found by D.H. Lehmer himself (Lehmer, 1933).

For a more complete survey, please refer to Smyth (2008).
Then, an interesting idea is to suggest a new statistical approach, which is

conceivable having regard to complete lists of values which are available up to
degree 44, and very rich lists up to degree 180. So, we will focus on the possible
values of limit points smaller than 1.3 using these tables as incoming data, and
the EM algorithm as a statistical analysis tool to suggest the existence of two
possible new values of limit points as 1.256533... and 1.286625...

In the following section, we draw the histogram of the 8415 available points
with the purpose of investigating what kind of distributions this list of points
could arise from.

2. Graphical observations

Let us examine very closely the histogram of the frequency distribution (Fig. 1)
of the given points, with zooms at interesting zones.

By zooming around the first known limit point 1.255433866 . . . , we obtain
Fig. 2.

The peculiar appearance of the graphic induces us to speculate that the
distribution of scalar values around the first known limit point does not follow
a simple gaussian model, but rather arises from a mixture gaussian model, as in
the following example (see Fig. 3) corresponding to a bimodal mixture made of
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Figure 1. Histogram of the frequency distribution of the known limit points

Figure 2. Zoom around the first known limit point
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Figure 3. Example corresponding to a bimodal gaussian

Figure 4. Zoom around the second known limit point

4000 points issued from the N (0, 1) Gaussian law and 12000 points issued from
the N (2.5, 1) Gaussian law.

The same observation can be made when zooming around the second known
limit point 1.285734864 . . . (see Fig. 4).

For determining the parameters of the underlying gaussian mixture, we use
a systematic method consisting in applying the EM algorithm (see Dasgupta
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and Schulman, 2000; MacLachlan and Krishnan, 2008; Tagare, 1998; Xu and
Jordan, 1996; Wu, 1983) to the given list of points.

For the reader’s convenience, we outline some EM theory in Section 3.

3. The EM algorithm

Consider n independent scalar values a1, a2, · · · , an. Each ai is supposed to
arise from a probability distribution whose density can be expressed as

f(x | θ) =

N
∑

j=1

pjgj(x | µj , σj).

Scalar value pj stands for the mixing proportion of the jth component of the

mixture, and we have

N
∑

j=1

pj = 1 and ∀j = 1, · · · , N, 0 < pj < 1.

Function gj(· | µk, σk) is the gaussian density with mean µj and standard devi-
ation σj , and is defined by

gj(x | µj , σj) =
1

σ
√

2π
e
−

(x−µj )2

2σ2
j .

θ = (p1, · · · , pN−1, µ1, · · · , µN , σ1, · · · , σN ) is a vector whose components are
the mixture parameters, which are estimated by maximizing the loglikelihood

L(θ | a1, · · · , an) =

n
∑

i=1

ln
(

N
∑

j=1

pjg(ai | µj , σj)
)

.

Given vector θ, the belonging h(k, l) of data point ak to cluster number l

can be computed by using Bayes’ theorem as

h(k, l) = p(cluster′s number = l | ak, θ) =
plg(xk | µl, σl)

N
∑

i=1

pig(xk | µi, σi)

.

One of the most liked method used for determining the maximum likelihood
solution is the Expectation-Maximization algorithm. Roughly speaking, assum-
ing that given data arise from a gaussian mixture model with N components,
the EM algorithm is devoted to estimate the parameters (means, standard de-
viations) of each component of the mixture for which the observed data are the
most likely.

The Expectation-Maximization algorithm for gaussian mixtures is an itera-
tive process defined as follows:

• Choose initial parameters settings.
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• Repeat until convergence:

– E-Step: Using the current parameter values, compute h(k, l) for
1 ≤ k ≤ n, 1 ≤ l ≤ N :

h(k, l)(i) =
p
(i)
l g(xk | µ

(i)
l , σ

(i)
l )

N
∑

i=1

p
(i)
l g(xk | µ

(i)
l , σ

(i)
l )

,

– M-Step: Use data points ak and just computed values h(k, l) to give
new parameters values:

∗ S
(i+1)
l =

N
∑

k=1

h(k, l)(i)

∗ α
(i+1)
l = 1

N
S

(i+1)
l

∗ µ
(i+1)
l = 1

S
(i+1)
l

N
∑

k=1

h(k, l)(i)ak

∗ (σ
(i+1)
l )2 = 1

S
(i+1)
l

N
∑

k=1

h(k, l)(i)(ak − µ
(i+1)
l )2.

We stop the iterative process when the log-likelyhood’s value becomes almost
unchanged from one iteration to the next.

4. Application for search of candidates to be new limit

points

Many softwares implementing EM algorithm are available on the web. Among
all, we choose to use Mixmod Software, which is an exploratory data analysis
tool for solving clustering and classification problems.

A careful observation of histograms above induced us to surmise that the
given list of points arises from a gaussian mixture constituted by four compo-
nents that we plan to make more precise.

Our choice was to work with Mixmod in Scilab environment.
Around the first known limit point 1.255433866 . . . , we applied EM algo-

rithm on interval (1.24, 1.27). Results obtained after calculations are summa-
rized in the following table:

Table 1. Two clusters on the first interval
means proportions

cluster 1 1.256533 0.433147

cluster 2 1.255336 0.566853
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Around the second known limit point 1.285734864 . . . , we applied EM algo-
rithm on interval (1.275, 1.295). Results obtained after calculations are summa-
rized in the following table:

Table 2. Two clusters on the second interval
means proportions

cluster 1 1.286625 0.36126

cluster 2 1.285674 0.63874

On each interval, calculations provided a precise approximation of the al-
ready known limit value, and a new value expected to be a new limit point for
Mahler measures of polynomials. So, our two new candidates are 1.256533 and
1.286625.

5. Conclusion

While these two new values seem to be promising, one should keep in mind that
contrary to known limit values, these new values are not mathematically proved
to be limit points. Numerical investigations simply lead us to consider these
points as good candidates, worthy of some more detailed theoretical studies.
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