
Control and Cybernetics

vol. 39 (2010) No. 4

Lyapunov functional for a system with

k-non-commensurate neutral time delays∗

by

Józef Duda

Institute of Automatic Control
AGH University of Science and Technology

Cracow, Poland

Abstract: The paper presents a method of determining the Lya-
punov quadratic functional for linear time-invariant system with k-
non-commensurate neutral type time delays. The Lyapunov func-
tional is constructed for its given time derivative, which is calculated
on the trajectory of the system with k-non-commensurate neutral
type time delays. The presented method gives analytical formulas
for the coefficients of the Lyapunov functional.
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1. Introduction

Lyapunov quadratic functionals are used to test the stability of systems, in com-
putation of the critical delay values for time delay systems, in computation of
the exponential estimates for the solutions of time delay systems, in calculation
of the robustness bounds for uncertain time delay systems, to calculation of a
quadratic performance index of quality for the process of parametric optimiza-
tion for time delay systems. We construct the Lyapunov functionals for the
system with time delay with a given time derivative. For the first time such
Lyapunov functional was introduced by Repin (1965) for the case of retarded
time delay linear systems with one delay. Repin (1965) delivered also the pro-
cedure for determination of coefficients of the functional. Duda (1986) used the
Lyapunov functional, which was proposed by Repin, for the calculation of the
value of a quadratic performance index of quality in the process of parametric
optimization for systems with time delay of retarded type and extended the
results to the case of neutral type time delay system in Duda (1988) and to the
case of linear time invariant system with two lumped retarded type time delays
in Duda (2010). In Infante and Castelan (1978), construction of the Lyapunov
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functional is based on a solution of a matrix differential-difference equation on a
finite time interval. This solution satisfies symmetry and boundary conditions.
Kharitonov and Zhabko (2003) extended the results of Infante and Castelan
(1978) and proposed a procedure of construction of quadratic functionals for
linear retarded type delay systems which could be used for the robust stabil-
ity analysis of time delay systems. This functional was expressed by means of
Lyapunov matrix, which depended on the fundamental matrix of time delay
system. Kharitonov (2005) extended some basic results obtained for the case of
retarded type time delay systems to the case of neutral type time delay systems,
and in Kharitonov (2008) to the neutral type time delay systems with discrete
and distributed delay. Kharitonov and Hinrichsen (2004) used the Lyapunov
matrix to derive exponential estimates for the solutions of exponentially stable
time delay systems. Kharitonov and Plischke (2006) formulated the necessary
and sufficient conditions for the existence and uniqueness of the delay Lyapunov
matrix for the case of retarded system with one delay. The numerical scheme for
construction of the Lyapunov functionals has been proposed in Gu (1997).This
method starts with the discretisation of the Lyapunov functional. The scheme
is based on linear matrix inequality (LMI) techniques. Fridman (2001) intro-
duced the Lyapunov-Krasovskii functionals for stability of linear retarded and
neutral type systems with discrete and distributed delays, which were based on
equivalent descriptor form of the original system and obtained delay-dependent
and delay-independent conditions in terms of LMI. Ivanescu et al. (2003) pro-
ceeded with the delay-depended stability analysis for linear neutral systems,
constructed the Lyapunov functional and derived sufficient delay-dependent con-
ditions in terms of linear matrix inequalities (LMIs). Han (2004a) obtained a
delay-dependent stability criterion for neutral systems with time varying dis-
crete delay. This criterion was expressed in the form of LMI and was obtained
using the Lyapunov direct method. Han (2004b) investigated the robust sta-
bility of uncertain neutral systems with discrete and distributed delays, which
has been based on the descriptor model transformation and the decomposi-
tion technique, and formulated the stability criteria in the form of LMIs. Han
(2005a) considered the stability for linear neutral systems with norm-bounded
uncertainties in all system matrices and derived a new delay-dependent stability
criterion. Neither model transformation nor bounding technique for cross terms
is involved through derivation of the stability criterion. Han (2005b) developed
the discretized Lyapunov functional approach to investigation of the stability of
linear neutral systems with mixed neutral and discrete delays. Stability criteria,
which are applicable to linear neutral systems with both small and non-small
discrete delays are formulated in the form of LMIs. Han (2009a) studied the
problem of stability of linear time delay systems, both retarded and neutral
types, using the discrete delay N-decomposition approach to derive some new
more general discrete delay dependent stability criteria. Han (2009b) employed
the delay-decomposition approach to derive some improved stability criteria for
linear neutral systems and to deduce some sufficient conditions for the existence
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of a delayed state feedback controller, which ensure asymptotic stability and
a prescribed H∞ performance level of the corresponding closed-loop system.
Gu and Liu (2009) investigated the stability of coupled differential-functional
equations using the discretized Lyapunov functional method and delivered the
stability condition in the form of LMI, suitable for numerical computation.

This paper presents a method of determining the Lyapunov functional for
linear dynamic system with k-non-commensurate neutral type time delays. The
novelty of the result lies in the extension of the Repin method to the system
with k-non-commensurate neutral type time delays. To the best of author’s
knowledge, such extension has not been reported in the literature. An example
illustrating the method is also presented.

2. Formulation of the problem

Let us consider a linear system with k-non-commensurate neutral type time
delays, whose dynamics is described by the equation















dx(t)
dt

−
∑k

i=1 Bi
dxt(−τi)

dt
= Ax(t) +

∑k

i=1 Aixt(−τi)

x(t0) = x0

xt0 = Φ ∈ W 1,2([−τk, 0), Rn)

(1)

for t ≥ t0, x(t) ∈ R
n, A, Ai, Bi ∈ R

n×n, i = 1, ..., k,

0 ≤ τ1 ≤ ... ≤ τi ≤ ... ≤ τk,

xt ∈ W 1,2([−τk, 0), Rn), xt(θ) = x(t + θ) for θ ∈ [−τk, 0).

Here, W 1,2([−τk, 0), Rn) is a space of all absolutely continuous functions with
derivatives in a space of Lebesgue square integrable functions on interval [−τk, 0)
with values in R

n.
We introduce a new variable y, defined by the formula

y(t) = x(t) −

k
∑

i=1

Bixt(−τi) for t ≥ t0. (2)

Thus, the equations (1) take the form






















dy(t)
dt

= Ay(t) +
∑k

i=1(Ai + Bi)xt(−τi)

y(t) = x(t) −
∑k

i=1 Bixt(−τi)

y(t0) = x0 −
∑k

i=1 BiΦ(−τi)

xt0 = Φ.

(3)

The state of the system (3) is a vector

S(t) =

[

y(t)
xt

]

for t ≥ t0. (4)
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The state space is defined by the formula

X = R
n × W 1,2([−τk, 0), Rn). (5)

On the state space X we define a Lyapunov functional, positively defined,
differentiable, whose derivative, computed on the trajectory of the system (3),
is negatively defined

V (S(t)) = yT (t)αy(t) +

0
∫

−τk

yT (t)β(θ)xt(θ)dθ+ (6)

+

0
∫

−τk

xT
t (θ)γ(θ)xt(θ)dθ +

0
∫

−τk

0
∫

θ

xT
t (θ)δ(θ, σ)xt(σ)dσdθ

for t ≥ t0, where

α = αT ∈ R
n×n, β, γ ∈ C1([−τk, 0], Rn×n), γ(θ) = γT (θ)

δ ∈ C1(Ω, Rn×n), Ω = {(θ, σ) : θ ∈ [−τk, 0], σ ∈ [θ, 0]} ,

and C1 is a space of continuous functions with continuous derivative.

3. Designation of the coefficients of the Lyapunov func-

tional

We compute the derivative of the functional (6) on the trajectory of the system
(3) according to the formula

dV (S(t))

dt
= grad(V (S(t))

dS(t)

dt
for t ≥ t0. (7)

Derivative of the functional (6), calculated on the basis of the formula (7),
is given by the formula

dV (S(t))

dt
= yT (t)

[

AT α + αA +
β(0) + βT (0)

2
+ γ(0)

]

y(t)+

+yT (t) [2α (Ak + Bk) + β(0)Bk + 2γ(0)Bk − β(−τk)] xt(−τk)+

+

k−1
∑

i=1

yT (t) [2α(Ai + Bi) + β(0)Bi + 2γ(0)Bi] xt(−τi)+

+xT
t (−τk)

[

BT
k γ(0)Bk − γ(−τk)

]

xt(−τk)+

+

k−1
∑

i=1

xT
t (−τk)BT

k 2γ(0)Bixt(−τi) +

k−1
∑

i,j=1

xT
t (−τi)B

T
i γ(0)Bjxt(−τj)+
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+

0
∫

−τk

yT (t)

[

AT β(θ) −
dβ(θ)

dθ
+ δT (θ, 0)

]

xt(θ)dθ+ (8)

+

0
∫

−τk

xT
t (−τk)[(Ak + Bk)T β(θ) + BT

k δT (θ, 0) − δ(−τk, θ)]xt(θ)dθ+

+

0
∫

−τk

k−1
∑

i=1

xT
t (−τk)[(Ai + Bi)

T β(θ) + BT
i δT (θ, 0)]xt(θ)dθ+

−

0
∫

−τk

xT
t (θ)

dγ(θ)

dθ
xt(θ)dθ −

0
∫

−τk

0
∫

θ

xT
t (θ)

[

∂δ(θ, σ)

∂θ
+

∂δ(θ, σ)

∂σ

]

xt(σ)dσdθ

for t ≥ t0.
We identify the coefficients of the functional (6) assuming that the derivative

(8) satisfies the relationship

dV (S(t))

dt
= −yT (t)Wy(t) for t ≥ t0 (9)

where W ∈ R
n×n is a symmetric positively defined matrix.

When the system (3) is asymptotically stable and the relationship (9) holds,
one can easily determine the value of a square indicator of quality of parametric
optimization, knowing the Lyapunov functional (6), because

J =

∞
∫

t0

yT (t)Wy(t)dt = V (S(t0)). (10)

From equation (8) and (9) we obtain the system of equations

AT α + αA +
β(0) + βT (0)

2
+ γ(0) = −W (11)

2α (Ai + Bi) + β(0)Bi + 2γ(0)Bi = 0 for i = 1, ..., k − 1 (12)

2α (Ak + Bk) + β(0)Bk + 2γ(0)Bk − β(−τk) = 0 (13)

BT
k γ(0)Bk − γ(−τk) = 0 (14)

BT
k 2γ(0)Bi = 0 for i = 1, ..., k − 1 (15)

BT
i γ(0)Bj = 0 for i, j = 1, ..., k − 1 (16)

dγ(θ)

dθ
= 0 (17)

AT β(θ) −
dβ(θ)

dθ
+ δT (θ, 0) = 0 (18)



1178 J. DUDA

(Ak + Bk)T β(θ) + BT
k δT (θ, 0) − δ(−τk, θ) = 0 (19)

(Ai + Bi)
T β(θ) + BT

i δT (θ, 0) = 0 for i = 1, ..., k − 1 (20)

∂δ(θ, σ)

∂θ
+

∂δ(θ, σ)

∂σ
= 0 (21)

for θ ∈ [−τk, 0], σ ∈ [θ, 0].

Equation (12) implies that

2α

k−1
∑

i=1

(Ai + Bi) + β(0)

k−1
∑

i=1

Bi + 2γ(0)

k−1
∑

i=1

Bi = 0 (22)

Equation (20) implies that

k−1
∑

i=1

(AT
i + BT

i )β(θ) +

k−1
∑

i=1

BT
i δT (θ, 0) = 0. (23)

From equations (14) to (17) it results that

γ (θ) = 0 for θ ∈ [−τk, 0] . (24)

We denote

C =

k−1
∑

i=1

Ai (25)

and

D =

k−1
∑

i=1

Bi. (26)

Taking into account equations (22) to (26) we can write the set of equations
(11) to (21) in the form

AT α + αA +
β(0) + βT (0)

2
= −W (27)

2α (C + D) + β(0)D = 0 (28)

2α (Ak + Bk) + β(0)Bk − β(−τk) = 0 (29)

AT β(θ) −
dβ(θ)

dθ
+ δT (θ, 0) = 0 (30)

(Ak + Bk)T β(θ) + BT
k δT (θ, 0) − δ(−τk, θ) = 0 (31)

(C + D)T β(θ) + DT δT (θ, 0) = 0 (32)

∂δ(θ, σ)

∂θ
+

∂δ(θ, σ)

∂σ
= 0 (33)

for θ ∈ [−τk, 0], σ ∈ [θ, 0].
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Because of relations (22) and (23), there does not exist equivalence between
the sets of equations (11) to (21) and (27) to (33), but there exists an implication
between them. The set of equations (27) to (33) is implied by the set of equations
(11) to (21). The equivalence between those sets holds in case of k = 2.

Now we find a solution of the set of equations (27) to (33). We assume that
the matrix D is not singular. From equation (28) we get

β(0) = −2α
(

CD−1 + I
)

(34)

and we put it into (27). After some calculations we obtain the relationship

αG + GT α = −W (35)

where

G = A − CD−1 − I (36)

Matrix G should be negatively defined because matrix W is positively de-
fined. From the formula (35) we can obtain the matrix α.

Now we take into account equations (30) and (32). We pre-multiply the
equation (30) by DT and we put into it the term DT δT (θ, 0), calculated from
equation (32). After some calculations we have

dβ(θ)

dθ
= GT β(θ) for θ ∈ [−τk, 0] (37)

where matrix G is given by formula (36).
The solution of the differential equation (37) is given by

β(θ) = exp(GT (θ + τk)β(−τk) for θ ∈ [−τk, 0]. (38)

From equation (29) we obtain the initial condition of the differential equation
(37)

β(−τk) = β(0)Bk + 2α(Ak + Bk). (39)

We put into equation (39) the term (34). After calculation we get

β(−τk) = 2α
(

Ak − CD−1Bk

)

(40)

where α is a solution of equation (35).
Now we can obtain the solution of the differential equation (37), with the

initial condition given by relation (40)

β(θ) = 2 exp(GT (θ + τk))α
(

Ak − CD−1Bk

)

for θ ∈ [−τk, 0]. (41)

Now we determine the matrix δ(θ, σ).
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The solution of equation (33) is as below

δ(θ, σ) = ϕ(θ − σ) for θ ∈ [−τk, 0], σ ∈ [θ, 0] (42)

where ϕ ∈ C1([−τk, τk], Rn×n) and C1 is a space of continuous functions with
continuous derivative.

From equation (32) we get

δT (θ, 0) = −
(

CD−1 + I
)T

β(θ) for θ ∈ [−τk, 0]. (43)

We put the term (43) into formula (31) and we get

(Ak + Bk)T β(θ) − BT
k (CD−1 + I)T β(θ) − δ(−τk, θ) = 0. (44)

After some computations we have

δ(−τk, θ) = (Ak − CD−1Bk)T β(θ) for θ ∈ [−τk, 0]. (45)

Taking into account relation (42), expression (45) takes the form

ϕ(−τk − θ) = (Ak − CD−1Bk)T β(θ) for θ ∈ [−τk, 0]. (46)

So,

ϕ(ξ) = (Ak − CD−1Bk)T β(−τk − ξ) for ξ ∈ [−τk, 0]. (47)

Hence

δ(θ, σ) = ϕ(θ − σ) = (Ak − CD−1Bk)T β(σ − θ − τk) (48)

for θ ∈ [−τk, 0], σ ∈ [θ, 0].

By putting into (48) relation (41) we get

δ(θ, σ) = 2(Ak − CD−1Bk)T exp(GT (σ − θ))α
(

Ak − CD−1Bk

)

(49)

for θ ∈ [−τk, 0], σ ∈ [θ, 0].

In this way we obtained all parameters of the Lyapunov functional (6).

4. A case of retarded type time delay system

Now we consider the problem in the case of retarded type time delay system.
We write the set of equations (27) to (33) for this case. We obtain it by putting
into equations the substitution Bk = 0 and D = 0. We obtain the following set
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of equations:

AT α + αA +
β(0) + βT (0)

2
= −W (50)

2αC = 0 (51)

2αAk − β(−τk) = 0 (52)

AT β(θ) −
dβ(θ)

dθ
+ δT (θ, 0) = 0 (53)

AT
k β(θ) − δ(−τk, θ) = 0 (54)

CT β(θ) = 0 (55)

∂δ(θ, σ)

∂θ
+

∂δ(θ, σ)

∂σ
= 0 (56)

for θ ∈ [−τk, 0], σ ∈ [θ, 0].
One can see that this set of equations does not have a non-zero solution,

therefore one needs another form of the Lyapunov functional for this case. Duda
(2010) proposed a proper functional for the case of linear time invariant system
with two lumped retarded type time delays and formulated the procedure of
determination of its coefficients.

5. An example

Let us consider the system described by











dx(t)
dt

− d
dx(t−τ)

dt
− e

dx(t−r)
dt

= ax(t) + bx(t − τ) + cx(t − r)

x(t0) = x0

x(t0 + θ) = Φ(θ)

(57)

t ≥ t0, x(t) ∈ R, θ ∈ [−r, 0), a, b, c, d, e ∈ R, 0 ≤ τ ≤ r.

We introduce a new variable

y(t) = x(t) − dx(t − τ) − ex(t − r) for t ≥ t0. (58)

Equation (57) takes the form



















dy(t)
dt

= ay(t) + (b + d)x(t − τ) + (c + e)x(t − r)

y(t) = x(t) − dx(t − τ) − ex(t − r)

y(t0) = x0 − dΦ(−τ) − eΦ(−r)

x(t0 + θ) = Φ(θ)

(59)

t ≥ t0, y(t) ∈ R, θ ∈ [−r, 0), a, b, c, d, e ∈ R, 0 ≤ τ ≤ r.

The Lyapunov functional is defined by the formula
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V (S(t)) = αy2(t) +

0
∫

−r

y(t)β(θ)x(t + θ)dθ+ (60)

+

0
∫

−r

γ(θ)x2(t + θ)dθ +

0
∫

−r

0
∫

θ

δ(θ, σ)x(t + θ)x(t + σ)dθdσ.

We obtain coefficients of the functional (60) as below.
According to equation (24)

γ (θ) = 0 for θ ∈ [−r, 0] . (61)

Equations (35) and (36) take the form

2gα = −w (62)

g = a −
b

d
− 1 (63)

where w > 0 and g < 0.
This is, so because the Lyapunov functional is positively defined and its

derivative on the trajectory of the system (59) is negatively defined.
From equation (62) we obtain

α = −
w

2g
. (64)

According to equation (41)

β(θ) = 2αp exp(g(θ + r)) = −
wp

g
exp(g(θ + r)) for θ ∈ [−r, 0] (65)

where

p = c −
be

d
. (66)

From the formula (49) we obtain

δ(θ, σ) = 2αp2 exp(g(σ − θ)) = −
wp2

g
exp(g(σ − θ)) (67)

for θ ∈ [−r, 0], σ ∈ [θ, 0].

6. Conclusions

The paper presents the procedure of determining the coefficients of the Lya-
punov functional, given by the formula (6), for the linear system with k-non-
commensurate neutral type time delays, described by equation (1). This paper
extends the method presented by Repin to the systems with k non-commensur-
ate neutral type time delays. The method presented allows for achieving the
analytical formula on the factors occurring in the Lyapunov functional, which
can be used to examine the stability and in the process of parametric optimiza-
tion to designate the square index of the quality given by the formula (10).
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