Control and Cybernetics

vol. 39 (2010) No. 4

Response—time analysis of a CAN network used for
supervisory control and diagnostic systems*

by
Jan Werewka! and Mirostaw Dach?

1 AGH University of Science and Technology
Departament of Automatics, Computer Science Laboratory
Krakéw, Poland
2 PSI — Paul Scherrer Institut, Villigen, Switzerland
e-mail: werewka@ia.agh.edu.pl miroslaw.dach@psi.ch

Abstract: This paper refers to construction methods of Super-
visory Control and Diagnostic Systems (SCDS) based on a CAN bus.
Emphasis is put on the construction of such systems. Meeting real
time constraints has become one of major aspects of this elaboration.

The study enumerates possibilities of using various communica-
tion mechanisms of CAN, applicable for real-time systems. Proposed
solutions are especially suitable for general-purpose SCDS. Princi-
ples of real-time analysis for CAN bus based systems are discussed
as well.

An example of SCDS implementation for a Swiss Light Source
(SLS) large scale accelerator project is given. Time analysis is made
for the constructed system with real-time conditions met. Experi-
ments performed in the SLS confirm the results of the analysis.

Keywords: real time systems, scheduling, distributed systems,
fieldbus, real time analysis, CAN, CANopen.

1. Introduction

Depending on application area, computer control systems have specific reliabi-
lity requirements. No matter how many sophisticated computer techniques for
constructing control systems have been applied, there always exists some risk of
a break-down situation. Here, the system reliability is understood as probability
that the system will perform some specified functionality in particular opera-
tional and environmental conditions over a definite time period. However, the
more complex the control system is, the more probable is its malfunction. With
respect to modern control systems, this applies both to hardware and software.

*Submitted: April 2008; Accepted: August 2010.

1136 J. WEREWKA, M. DACH

One of the ways of improving control system reliability parameters, in view of
idle time minimization, is a Supervisory Control and Diagnostic System (SCDS).
The SCDS is a real-time distributed system supervising a subordinate control
system. The SCDS belongs to a sub-class of control and diagnostic systems
implementing simple control-diagnostic functions.

The concept of SCDS is similar to the subordinate distributed control system
(DCS). The SCDS should be highly reliable (more reliable that the subordinate
control system) and deterministic.

The SCDS usability is assessed on the basis of reaction-time to certain events.
The aim of this paper is to present the principles of time analysis of the proposed
SCDS based on CAN bus.

2. The SCDS properties

One of fundamental quality indexes, typical for real-time distributed systems,
is the reliability of the system. Two basic solutions considerably improve the
reliability requirements (see Fig. 1):

e Redundant control systems

e Supervisory control systems.

Supervisory Control
and Diagnostic

System (SCDS)
’ Control Redundant control
il J—
system system
Control
system
!
Control Control
plant plant

Figure 1. Architecture of supervisory and redundant control systems

Redundant control system duplicates basic controls of the primary system,
taking over its functions in case of failure. In the areas where safety constitutes

Response time of a CAN network for supervisory control and diagnostic systems 1137

priority, multilevel redundant control systems are used, e.g. in aviation - in
addition to basic control system an auxiliary one is applied, and when it breaks
down, an emergency system takes over. The auxiliary control system is usually
a functional copy of the primary system, whereas the emergency control system
is its simplified version that provides basic required functions only. Although
redundant control systems considerably increase reliability of the whole system,
they are quite expensive.

An alternative for the redundant control system is a supervisory control
system, whose task is to monitor control system operation, and take simple
decisions in case of failure. The SCDS surpasses the redundant control systems
because of a lower cost.

Unlike redundant control systems, the SCDS does not take over the functions
of the proper system in case of failure; its functionality is reduced to monitoring
and control the DCS system. The SCDSs are used only in situations which are
not catastrophic, e.g. for such distributed automation systems as experimental
aerodynamic tunnels, treatment and distribution networks, watering systems
for agriculture, etc.

The SCDS is areal-time distributed control system performing simple control-
diagnostic functions. Unlike distributed computer control system, its real-time
equivalent has the following properties:

e It diagnoses merely the critical physical parameters of the control system
to recognize failure states.

e It sends mainly "basic" control signals of, e.g. on/off, initiate type, etc.,
which considerably influence the DCS operation. These signals are the
responses to diagnosed failure states of the DCS.

e It ensures hardware and software independence of the DCS with respect to
the control layer. Failure of the DCS does not disturb the SCDS operation.
The SCDS and the DCS should not use the same resources, e.g. power, so
they do not affect each other.

e It enables integration of the two systems at the visualization layer. So the
same user interface can be used for both systems, thus reducing the cost
of the whole system.

e Low cost of the system is assumed. Cost criterion is an important fac-
tor of SCDS application as compared to the DCS. The SCDS should be
considerably cheaper than the DCS.

o It meets predictability requirements (determinism) of the system. Basic
function of the SCDS is to monitor DCS operation, therefore the SCDS
should react quickly in a predictable time horizon.

e It is highly reliable, at least by one order over the DCS.

e Broadening of the SCDS control-diagnostic properties should not require
constructing the system anew. The DCS extension by additional function
blocks should easily imply the development of SCDS.

1138 J. WEREWKA, M. DACH

3. SCDS architecture

The SCDS is expected to perform simple control-diagnostic functions only.
A generalized three-layer model, assumed for the SCDS, see Meinert (1995)
(Fig. 2), consists of visualization layer, data transfer layer and control layer.

control-diagnostic cycle off-line control cycle

analog and digital
signals

Visualisation

Data readout

Off-line data
analysis

Determinig
controls

digital signals

Setting
controls in
actuators

data transfer
layer

visualization layer

control layer

Figure 2. A generalized model of the SCDS operation

The system operation can be presented in the form of two cycles: control-
diagnostic cycle (control layer) connected with off-line control cycle (visualiza-
tion layer). At the initial stage, analog and digital data are read from the
sensors providing information on operational state of the DCS. The data are
gathered, processed, and transmitted to visualization layer, for the operator
(off-line processing).

Control is determined on the basis of data obtained from sensors and oper-
ator settings. It has the form of digital signals switching on or off the critical
parts of the DCS.

Functional outline of the SCDS architecture can be created on the basis of
the three-layer model. The visualization and transport layers assure interac-
tion between the operator and control layer. The SCDS control layer is most
important and has the following tasks:

Response time of a CAN network for supervisory control and diagnostic systems 1139

e Controlling and monitoring given physical parameters. This is performed
by execution processes.

e Determining controls on the basis of physical parameters and parameters
set by the operator. This is performed by the control process.

e Making data available to the operator for monitoring physical parameters.

e Acquiring current control parameters for the control process from the op-
erator.

4. Time analysis of a CAN bus

A distributed control system consists of three layers: visualization, (data trans-
fer) transport and control layer. Control layer of SCDS counsists of two sub-
layers: control sub-layer and execution sub-layer. The structure of SCDS is
presented in Fig. 3.

Bridge computer CAN bus
1] O ‘
pS
m Z
_F_E..-‘ 2l 3
— | of [o
L= o,
control execution
sub-layer sub-layer
visualization layer data transfer layer control layer

Figure 3. Layered model of distributed control system

This paper presents an SCDS implemented with CAN fieldbus (CAN Spec-
ification, 1991; Pfeiffer, 1994; Sinitean, 1996; Zuberi and Shin, 1996; Thomesse,
2005; Cavalieri, 2005).

The CAN standard defines a communication protocol, by means of two low-
est sub-layers of the ISO/OSI communication model: data interface sub-layer
and physical network sub-layer. These layers are predefined in ISO - DIS 11989
and ISO - DIS 11519 for the CAN. Data connection layer from the ISO/OSI
model is additionally divided into Logical Link Control (LLC) sub-layer and
Medium Access Control (MAC) sub-layer. The physical medium is accessed
in CAN by means of the Carrier Sense Multiple Access/Bitwise Connection
(CSMA /BC) method. When messages are sent simultaneously by some nodes,
only one of them has the right to transmit the whole message. In order to
determine which node accesses the transmission media, the arbitration field of
the messages is used. Message identifier located after the Start of Frame (SOF)
is the most important component of the arbitration field (Fig. 4). Network
nodes which "lost the competition" stop to transmit data and switch into high
impedance state.

1140 J. WEREWKA, M. DACH

CAN messages are sent without destination address, therefore each node
reads all data transmitted through the network. Messages received by the nodes
are recognized on the basis of the ID identifier. The identifier field contains 11
or 29 bits (Fig. 4). Each node has so-called acceptance filter, which compares
8 oldest bits of the identifier with some filter mask. Messages received by the
node, when meeting meet the mask condition, are transmitted further to the
CPU node where they are processed. Remaining messages are rejected. The ID
is also used to determine access priority.

Start IDE 10

v #H

|dentifier DLC Data CRC | ACK| EOF+IFS

dl4d

1Bit 11 Bits 1Bit1Bit1Bit 4Bits 0-88Bits 16Bits 2Bits 10 Bits

Figure 4. Data frame of CAN 2.0 A

ID with the lowest bit representation has the highest priority. Additionally,
four identifier bits at positions 7 - 10 determine message priority within the
node, i.e. 0 - 15 (0 - highest priority, 15 - lowest priority). If there are several
messages in the buffer ready to be sent, the highest priority message is sent.
Three types of frames for sending messages are provided by CAN: data, error
and overflow frame.

The data frame (Fig. 4) begins with the Start Of Frame (SOF), followed
by 11 bit identifier. Next comes the 7 bit control area (RTR, IDE, r0, DLC).
The Remote Transmission Request (RTR) bit determines whether the message
is an information frame (RTR = 0), or a request for data from the network
(interactive frame). Data field contains up to 8 Bytes. Remaining fields in
the frame are generated by the CAN controller: 16 control bits of Cyclical
Redundancy Check (CRC) and confirmation bits. The confirmation bits are
generated by the reception node to confirm transmission of the correct message
(ACK field). Each frame is terminated by 7-bit End Of Frame (EOF). Next
frame can be sent after IFS (Inter Frame Space) occurrence.

Time analysis of fieldbuses is performed with respect to message ordering.
As far as the ordering is concerned, the Medium Access Control (MAC) layer of
the ISO/OSI model is the most important for fieldbuses. This layer determines
the conditions under which specific nodes get access to the transmission medium.
Due to the type of access to the medium, CAN may be treated as a centralized
system of task (message) ordering.

Existing mechanisms of message control (scheduling) for real-time systems
can be divided into the following categories (Nolte, Sjodin and Hansson, 2003;
Nolte, Nolin and Hansson, 2005; Davis et al., 2007):

Response time of a CAN network for supervisory control and diagnostic systems 1141

e Priority-driven — static, dynamic and mixed-type algorithms.

e Time-driven, e.g. Flexible Time Triggered communication on CAN, see
Nolte (2003), Nolte, Sjodin and Hansson (2003), and Pedreiras and Almeida
(2000).

e Share-driven — dependent on resource allocation algorithm.

The priority-driven mechanism is the most natural one for CAN (as for central-
ized systems).

Controlling fieldbus data transmission depends on transmission parameters,
i.e. bandwidth and latency. In classical analysis of CAN bus, the worst-case
latency of CAN frame transmission is considered (transmission time is the
longest), see Nolte (2003), Tindel and Burns (1994), Tindel, Burns and Wellings
(1995), Tindel, Hansson and Wellings (1994). This issue is reduced to standard
analysis of time fixed-priority scheduling algorithm (Nolte, 2003; Tindel and
Burns, 1994; Tindel, Burns and Wellings, 1995; Tindel, Hansson and Wellings,
1994). The response-time is calculated for the worst case, i.e. when all frames
are transmitted at the same time. Response-time analysis method are verified
and updated in Davis et al. (2007).

While calculating the transmission-time of CAN messages, it is necessary to
consider "bit stuffing" mechanism, which is responsible for synchronizing frames
at a specific bit level. When the transmitted frame has five bits at the same
logical level, a stuff bit is added automatically. Its polarization is opposite to
that of its predecessors (Fig. 5).

1]2]3]a |5 |6 1234 5] |

sender
| | HER
12 |3 |4 |5 e 123 4 5 |

bus \ /
stuff-bits

Figure 5. Bit stuffing example

If a frame has 6 or more bits of the same polarization, it is reported as
an error. Bit stuffing can make effective number of bits greater than expected
from the size of the frame. Higher number of transmitted bits lengthens the
transmission. Bit stuffing mechanism is not applied for the last 10 bits of the
frame. However, it affects 34 control bits and 0 - 8 data bytes (for CAN 2.0 A
standard).

1142 J. WEREWKA, M. DACH

The total number of bits for data frame is calculated according to formula
(1), assuming the maximum number of stuff bits:

+8L,, —1
8Ly + g+ 10+ {%J (1)
where:
L., €]0,8] — number of bytes for data frame m.
g € {34,54} — number of control bits for CAN 2.0 A and CAN 2.0 B
standards.

If 74 is the transmission-time of a single bit, the worst-case latency can be
calculated as:

8L, —1
Cm = (SLm—l-g—i-lO—i— {%J) Tvit - (2)

(Maximum number of stuff bits = Floor ((34 4+ 64 — 1)/4)) = 24).

The 8 Byte data frame may contain up to 24 stuff bits, which extend trans-
mission time by over 20%. Instead of taking maximum number of stuff bits, as
in the worst-case scenario, a probabilistic approach can be employed, where the
stuff bits distribution is based on the statistical data. T. Nolte (2003) has shown
that response-time in the probabilistic approach is considerably shorter than in
the worst-case. Besides, probabilistic results are closer to those obtained from
actual measurements. The CAN protocol overhead resulting from the stuff bits
is considerable and cannot be neglected.

The CAN standard defines only the way in which data are exchanged in the
network. In case of specific application, additional elements should be defined,
e.g. significance of data, identifier allocation, response to errors from physical
layer, message confirmation, transmission of data larger than 8 Bytes. These
elements are specified in application layer. CANopen (2000) protocol is one of
the most popular solutions.

CANopen defines two types of data transmission with different characteristics,
which meet requirements of automation systems in full application range. They
include Service Data Objects, SDO, and Process Data Objects, PDO.

SDO transfers are acyclical and of low priority, used mainly for configuring
CANopen nodes. Each SDO contains 16-bit index and 8-bit subindex referring
to specific configuration parameter. The client-server communication model
is usually applied for SDO. In such a case, controlling information transfer is
always triggered by the master node, which acts as a client, whilst the slave
node provides information (service), thus acting as a server.

The PDOs are used for transmitting time-critical data. They do not intro-
duce any overhead because one CAN frame corresponds to one PDO. Therefore,
data transfer using PDOs is faster and more flexible then using SDOs. The
CANopen protocol offers four PDO transmission modes:

Response time of a CAN network for supervisory control and diagnostic systems 1143

e Synchronous mode:

o event driven (using the SYNC object) — client-server model. The
master node (client) sends a SYNC message to the network. In re-
sponse, the slave nodes (servers) transmit a PDO;

o time driven (controlled by internal clock) — producer-receiver model.
Slave nodes (message producers) send PDOs in constant time inter-
vals. The message is directed to the master and /or slave nodes which
expect specific data.

e Asynchronous mode:

o remotely requested — client-server model. The master node (client)
sends a PDO to the network, requesting information from of a spec-
ified node. The slave node (server) responds with a PDO involving
appropriate data;

o Event-driven (e.g. temperature has changed by 0.1°C) — producer-
receiver model. Following some event, e.g. change of the temperature
by 0.1°C, the slave node (message producer) sends PDO to the net-
work.

Analysis of CAN bus with CANopen protocol shows that for real-time data
transmission it suffices to take PDOs into consideration for the following reasons:

e PDO priority may be changed dynamically.
e Each PDO corresponds to one CAN data frame.

It follows from above that PDOs are best suited for data transmission in CAN
by CANopen protocol in RT conditions. They offer wider range of transmission
modes than SDOs and flexibility of priority selection.

Another issue related to data transmission is selection of the optimal message
scheduling mechanism. Due to the transmission medium access mechanism the
priority-driven algorithms are most natural for CAN. In CANopen protocol only
a fixed priority-driven algorithm can be used. Dynamic and mixed-type (MTS)
priority-driven algorithms are not allowed. In MTS algorithm the identifier bits
are manipulated in a way not permitted in CANopen. The 4 identifier initial
bits in CANopen define the code of the message-object function in the network.

5. Data transmission models for SCDS

Message scheduling for the proposed system can be implemented by means
of the Flexible Time Triggered communication on CAN (FTT-CAN). Bear-
ing in mind assumptions for SCDS, hardware realization of execution sub-layer
with CANopen protocol, and also selection of time-driven message scheduling
method, the following concept models of data acquisition server have been an-
alyzed for the control sub-layer (Dach, 2004):

1144 J. WEREWKA, M. DACH

e Polling server. In this case the server enquires specific CAN nodes peri-
odically or aperiodically. The server polls the network, and gets responses
from the nodes. No answer means error or network failure. The polling
method is deterministic and simple, however, it requires a considerable
part of the transmission band. The polling server for CANopen protocol
can use PDOs in the synchronous transmission mode.

e Waiting server. The server waits for information from the nodes. Occupa-
tion of the band strongly depends on configuration of the nodes and can
be significantly reduced. Messages may be sent periodically or aperiod-
ically. Only in case of periodic messages the server is able to determine
whether all network nodes operate properly. A compromise solution may
be such configuration of the nodes that the messages are sent aperiodically,
e.g. whenever temperature changes, together with periodic "heart-beat"
messages. PDOs are used for this server type.

e Mixed-type server. In this case, polling server and waiting server mecha-
nisms are applied. Depending on the polling server parameters and con-
figuration of the nodes, better results may be obtained than in two other
cases.

Applicability of the presented solutions will be discussed in more details. Func-
tional properties and time analysis will be done using UML sequence diagrams.

5.1. Polling server

The idea of polling server is based on elementary cycles periodically initiated
by the master node, starting from transmission of SYNC objects (Fig. 6).
Slave nodes are programmed in such a way that they respond to SYNC object
by sending PDOs with specific data. PDO priorities are attributed arbitrarily,
and do not depend on the address of the source node.
For the worst-case scenario with maximum stuff bits, the system response-
time for a single frame may be calculated as folows:

Rsys = CSYNC + 3Tbit + Tproc + Z (Cm + 3Tbit) (3)
m=1
where:
Rsys — response-time of the system,

Csync — transmission-time of a SYNC object; this object does not
contain a data field,
3Tpiz — minimum inter-frame space,
Tproc — time needed by the nodes to process SYNC message,
C,, — time of PDO transmission,
n — maximum number of nodes in the system; n = 127 for CANopen.

Response time of a CAN network for supervisory control and diagnostic systems 1145

:CANserver :CANmasterNode :CANbus

— .setOperational() |

|
L send Oper Msg
.sendSYNC() >If,]

— - > send SYNC Msg

get PDO Msg msg1
|

get PDO Msg |_| msg2

et PDO Ms
.readBuffer() g 9 9 W msg128

.processBuffer()
T {epeatLoor} T

Figure 6. Polling server

Message blocking does not have to be taken into account, since response-
time of the whole system is considered (not specific PDOs). Polling frequency
should enable all nodes to send PDOs before another cycle begins. Moreover,
some time margin should be assumed for sending control or configuration data
from the master to slaves.

If some nodes are privileged, then the polling server may send SYNC objects
with various ID numbers to specific group of nodes alternately in successive cy-
cles. The synchronous transmission mode with SYNC objects is rarely encoun-
tered in other types of fieldbuses. This solution seems to be more efficient than
the traditional mechanism of polling individual nodes.

5.2. Waiting server

Waiting server (Fig. 7) does not send SYNC objects. Its operation is based
on cyclic reading of the master node buffer. This cycle, however, does not
depend on the number of slaves, as it does for the polling server. The slaves are
programmed in such a way that the PDOs are transmitted asynchronously after
a change in the monitored physical parameters, e.g. temperature. To provide the

1146 J. WEREWKA, M. DACH

highest reliability of the system, slaves employ internal clock, and in fixed time
intervals send PDOs informing about their state. This mechanism is sometimes
called a "heart-beat", it informs the master whether slaves operate correctly.
Any breakdown or physical unplugging of any slave stops heart-beat information
in the master, which in turn, is treated as the server error.

:CANserver :CANmasterCard :CANbus

_ .setOperational() send Oper Msg |

get PDO Msg ’_L‘ msg "i"
I

get PDO Msg |_| msg *j"

get PDO MSg |_| msg "n"
{0<ijn <128} |

.readBuffer()

-t
.processBuffer()
T T
| {epeatLoopj> |

Figure 7. Waiting server

Asynchronously triggered data transmission with PDOs should have higher
priority than the heart-beat objects. The period for the heart-beats should be
long enough, so as not to overload the network. Waiting server based on such
mechanism uses transmission bandwidth more efficiently than the polling one.

Master node passively waits for the asynchronously triggered messages; it
does not have any control over the frequency of their occurrence. When physical
parameter changes too often in many nodes at the same time, the higher-priority
messages may block access to the network. This situation is very disadvanta-
geous, as the master node does not obtain timely information on the state of
the entire system. This problem can be solved by assuming appropriate Mini-
mum Interarrival Time (MIT) for aperiodic messages, so that they arrive rarely
enough, and do not block lower-priority messages.

Selection of MIT is not trivial. MIT depends on the number of nodes, length
of data frames in aperiodic messages, frequency of heart-beat, etc. Another so-
lution to the bus blockade problem may be master node to cut off those slaves,
which send the aperiodic messages too frequently. Master can also lower pri-

Response time of a CAN network for supervisory control and diagnostic systems 1147

ority of aperiodic messages sent by those slaves. Cutting off the nodes can be
performed by sending specific CAN messages (NMT messages of the highest
priority). Network master can control communication state of other nodes (net-
work slaves) of a CANopen network, i.e. it can change the state of all nodes or
of an individual node by a single command.

5.3. Mixed-type server

The concepts of polling and waiting servers are combined into a mixed-type
server, which handles synchronously and asynchronously triggered messages.
Each node is programmed so as to transmit both synchronous and asynchronous
PDOs (Fig. 8).

Synchronous messages have higher priority than asynchronous ones. More-
over, slave nodes are divided into groups. In each elementary cycle the master
sends synchronization message directed to different group of slaves. The length
of each cycle enables each node of a given group to send PDO in synchronous
mode, and also enables asynchronous messages from an arbitrary node.

In this approach it is possible to determine maximum impassable time of
data acquisition from each node based on synchronous transmission mode. In
case of many nodes and moderate network load, the asynchronous messages
provide data much faster than synchronous ones.

Mechanism of mixed-type server is presented in figure Fig. 8. The UML
diagram represents a system involving 120 slave nodes divided into 12 groups.
The mixed-type server collects information from all the nodes by means of syn-
chronous messages, after performing 12 cycles. Notation used in Figs. 7 to 9
differentiates between calling methods (e.g. .sendSYNC) and issuing bus com-
mands (e.g. get PDO Msg).

6. Verification of time constraints

Meeting time constraints for a system based on CAN bus with CANopen pro-
tocol, employing the presented server concepts, depends mainly on the rate of
data transmission and network load Werewka and Szmuc (2001). Determina-
tion of the length of the elementary cycle is the basic problem for polling and
mixed-type severs. The elementary cycle should exceed time limit for the en-
tire system; besides, occupation of the transmission bandwidth by synchronous
messages should allow for some additional messages, e.g.:

e Asynchronous messages sent by slave nodes (mixed-type server),
e Network management and control messages sent by master to slaves.

Rate Monotonic Analysis (RMA) can be applied for the polling server (Liu
and Layland, 1973; Klein, Lehoczky and Rajkumar, 1994; Sha, Rajkumar and
Sathaye, 1994). Time constraints can be analytically verified by the equation

1148

J. WEREWKA, M. DACH

:CANserver

:CANmasterCard

:CANbus

.setOperational()

.sendSYNC(i)
{i=1,11,21..111}

L

.readBuffer()
-

|
e

|
send Oper Msg |

g

send SYNC Msg

.processBuffer()

T
I

<<:repeatLoop)>

get SYNC PDO |_|SynC

PDO i
Sync
tSYNC PDO
% Q PDO "i#1"
/\/
Sync
et SYNC PDO
J N
get ASYNC PDO Async
PDO "n"
get ASYNC PDO ’J“ASV”C
PDO "m"
{0<n,m <128

h
|
|
|

Figure 8. Mixed-type server

Response time of a CAN network for supervisory control and diagnostic systems 1149

and condition (4):

i%gn(ﬁ—l) . (4)

Fulfillment of (4) is sufficient for message scheduling according to the Rate
Monotonic (RM) algorithm. The condition (5) can be applied for polling server
as follows:

C(SYNC + 3Tpit + Tproc - C; + 3mpit Rsys 1
* Z 111 o Tcycle o n()

Tsync —
= ®)

— Tcycle > #
n(2n — 1)
where:
C; — transmission time of message from node 4,
T, — arrival-time of message (from node i); for the polling server
111' = TSYNC = Tcyclea
Tsync — period when SYNC messages arrive.
Rsys — time of system response,
Teycle — duration of elementary cycle,
n — number of nodes in the system.

The condition (5) is sufficient for determining whether time constraints are
met by the polling server.

7. Implementation of control process for CAN

Reliability is key aim of SCDS software, it can be obtained by using object-
oriented techniques and as many verified standards and software packages as
possible. Application of well adopted standards and known software pack-
ages facilitates system servicing by third parties, and increases compatibility
of hardware-software. Implementation of the data server and the control pro-
cess involved Linux with RTAI extension, see Cloutier (2000), RTAI (2006),
Dach (2004), Dach, Korhonen and Pal (2003) (Fig. 9).

Data server, denoted in figure Fig. 9 "CAN-EPICS data server", is connected
to the control process by RT FIFO queue. The task of the process (denoted
"CAN CTRL process") is to control data transmission between CAN and the
data server. To ensure deterministic response-time of the whole SCDS, the
control process is treated as time-critical. Accordingly, it has been implemented
within the kernel workspace of the system. The control process is executed
periodically. It operates as the polling server using synchronous method of data
acquisition. The mechanism is presented in figure Fig. 10.

1150 J. WEREWKA, M. DACH

std. Linux
shell scripts

std. Linux
Applications

CAN-EPICS
data server

_____ L

sys. calls

User workspace

Kernel workspace

CAN CTRL
process
(RT-task)

Linux Kernel

drivers

scheduler

RT-linux module

vy

Hardware

RT CAN
driver

CAN master
card

Figure 9. Relations between data server and control process in Linux RTAI
environment,

:CANserver :CANmasterNode :CANbus

_ .setOperational() send Oper Msg |

.sendSYNC |_|_|
O send SYNC Msg

]

get PDO Msg I_I_| msg1

receive
et PDO Ms |_|_|
window 9 9 I msg2
N

get PDO Msg |_| msg128

send PDO Msg |
transmit processBuffer() L_I
window : %

I
|| || I
| .repeatLoop | |

Figure 10. Functionality of the control processes

.writeBufferOUT()

.readBufferIN()

Response time of a CAN network for supervisory control and diagnostic systems 1151

The control process sends SYNC object to CAN in fixed time intervals, and
then switches over to standby-state, waiting for responses from the nodes. Nodes
(CAN modules) send PDO message with current state of measured parameters.
Each elementary cycle is divided into two parts, called windows: receive window
and transmit window. All the messages from the monitored nodes are obtained
within the receive window. The transmit window involves control parameters,
sent from control process to nodes.

Data exchange between the control process and the data server proceeds
through RT FIFO buffer, separately for the incoming and outgoing messages
(RT FIFO IN and RT FIFO OUT, respectively). The control process is a real-
time task of high-priority. Thus, it is executed before remaining no-RT tasks.
Functionally, its design is simple, and does not cause processor overloading.

8. Implementation in SLS

SCDS has been implemented for the Swiss Light Source (SLS) (Synchrotron....,
1999) accelerator control system. From control viewpoint, each accelerator is a
complex object of control, consisting of a number of highly distributed subsys-
tems. Any disturbance in operation of VME (VME, 1992) computer requires
immediate assistance. The system consists of 166 VME crates distributed along
the 288 [m] of accelerator ring. The SCDS consists of two independent segments
of CANopen bus. Altogether 222 hardware CANopen modules are applied in
SLS (112 for the first segment and 110 for the second). The assumed cable
length of 500 [m] for the longer CAN bus segment implied the transmission rate
of 125 [Kb/s|. This rate turned out to be too high. Error frames were observed
on the nodes located on either end of the bus. After reducing the transmission
rate to 50 [Kb/s|, no error frames were observed. Other technical details are
given in Dach and Werewka (2008).

Main task of the SCDS in SLS is to monitor operation of VME crate power
supplies, and send simple control OFF/ON signal to specific VME crate power
supply resetting the system bus.

Time constraint of 500 [ms] for SCDS refers to the entire system, not to
specific nodes. All monitored data are updated by the master in fixed time
intervals corresponding to one cycle (presented in Fig. 10). Analogously, control
values are transmitted to distributed nodes in the same cycle as the monitored
signals.

Each station of the distributed system involves hardware for controlling and
monitoring digital data. One input module for analog parameters, i.e. temper-
ature, can be connected to three stations - VME crates.

The SCDS for SLS has been developed under the following assumptions:

1152 J. WEREWKA, M. DACH

lw =166 — Number of stations to be monitored/controlled.

This is the number of (logical) nodes for each segment
of the CAN bus, i.e. 84 nodes for the first segment and 82 for
the second. Each node uses one digital module and one third
of the analog module. So for the 166 nodes the number
of modules is 166 + ceiling (166/3) = 222.

[=2 — Number of control parameters per one station.

k=6 — Number of monitored parameters per station
(including 5 digital and 1 analog parameter).

My,p — Signal p being the monitored physical parameter in node v.
Uy,q — Control parameter ¢ in node v.
tu,, =tm,, — Update time for monitored and controlled parameters

is equal to TeveorLe-
Trps is CAN bus response-time, i.e. transmission time of monitored and
control parameters:

Tres = T'trans + TrEC, Tres < Tcycre < Dsys (6)

Trres — CAN bus response-time.
Trec — Width of the response window (Fig. 10). Time needed to receive
PDOs with monitored data. It includes transmission time
of the SYNC object, PDOs with digital and analog data.
Trrans — Width of the transmit window (Fig. 10). Time needed to send
control signals to the nodes. It includes transmission-time
of PDOs with digital data.
TCYC’LE - Cycle duration.
TrEs is determined according to formula (3) for all data transmitted to and
from analog and digital modules:

[n/31

U
Trec = Csync + 3Tvit + Tproc + Z(CZ-BIO + 37it) + Z (CJAI +37it) (7)
i=1 j=1
n
TrrAns = Z(CiBIO + 3Tbit) (8)
1=1

Csync — Transmission time of SYNC object to acquire the monitored data.
17 — Number of CAN bus logical nodes for individual segment
84 and 82). Number of PDOs with digital data is 7,
and the number of PDOs with analog data is [7/3].

CPBI0 — PDO transmission-time for digital measurement /control modules.

Response time of a CAN network for supervisory control and diagnostic systems 1153

CAl — PDO transmission-time for the temperature module (analog data).
Single module generates PDO for three stations — VME crates.

37t — Inter-Frame Space (IFS).

Tproc — Time needed by slave nodes to process SYNC messages.

D,ys — Time constraint for the entire system, i.e. 500 [ms].

Response-time Trps is determined independently for each of the two CAN
bus segments. The segments are independent, therefore the response-time of
the entire system is the longer response-time of the two segments.

9. Experimental results

The SCDS for SLS consists of two independent segments employing the CANopen
control modules. The two segments are connected to general-purpose Ethernet
through common PC-bridge computer equipped with CAN master card. The
computer runs under Linux (RedHat distribution) with RTAI extension.
Transmission parameters have been selected based on the following:

e Analysis of CAN fieldbus functionality,
e Analysis of control process repeatability,

e Measurement of transmission latency between execution and visualization
layers.

To analyze the CAN bus, response-time of CAN modules after receiving
the SYNC message was measured. Measurements were made for 5, 10, 20,
30, 40, 50, 60, 70 modules of the same type, i.e. digital IN/OUT. Each of the
modules was configured to send a PDO with 1 byte after receiving the SYNC.
Transmission rate of 50 [Kb/s] was set. To obtain more detailed statistical data,
1000 measurements were made for each bus configuration. Results are listed in
Table 1; the time of SYNC transmission is not accounted for. As expected,
the response-time of the system increases proportionally to the number of CAN
modules.

To compare the measurement and calculation results better, deviation can
be calculated from the following equation:

Xmax - Xmin
Deviation = —x * 100 , 9)

where X4 and X,,;, are experimental maximum and minimum values, re-
spectively. The deviation (no stuff bits taken into account) does not exceed
4.7%. The pessimism accompanying calculation of response-time with stuff bits
as compared to the time obtained directly from measurements stays at constant
level, regardless of the number of nodes, and is about 11%.

Determination of response-time for CAN bus is important for selection of

(receive-transmit) cyclelength and time margin. While determining the response-
time for a segment with 108 nodes, 27 modules for analog data and 81 IN/OUT

1154 J. WEREWKA, M. DACH

Table 1. Table of response-times for a given number of nodes

Number Response-time obtained from the Response-time
of nodes measurements determined from
in eq.(3)
network | Minimum | Maximum | Mean Standard | No stuff | For worst
[ms] [ms] [ms] deviation bits case
Xmin Xmaz from the [ms] [ms]
mean [ms|
5 5.752 5.875 5.766 0.034 5.5 6.5
10 11.443 11.561 11.485 0.052 11.0 13.0
20 22.941 23.052 23.003 0.084 22.0 26.0
30 34.448 34.551 34.538 0.111 33.0 39.0
40 46.051 46.153 46.088 0.144 44.0 52.0
50 57.653 57.755 57.683 0.165 55.0 65.0
60 69.050 69.254 69.155 0.206 66.0 78.0
70 80.550 80.652 80.604 0.256 77.0 91.0

digital modules should be taken into account. When calculating the response-
time, the following elements should also be considered:

e SYNC message duration,

8 bytes of data per PDO for analog data,
e 1 byte of data per PDO for digital data,
e maximum number of stuff bits,

e transmission rate in the network - 50 Kb/s.

The response-time of SCDS was determined on the basis of formulae (6), (7),
(8) and (2). The total response-time consists of two elements: response-time for
the monitored parameters and response-time for control signals. The first one
was determined from the formula (7) what yields

Trec = 179.32[ms] .

Response-time for control signals is determined from (8), so
Trrans = 105.3[ms].

Thus, the total response-time is
Tres = Trrans + Trec = 284.62[ms]

(for 108 modules). Assuming the target number of 112 modules per each CAN
bus segment, the response-time becomes:

TRES = 29512[7715] .

Response time of a CAN network for supervisory control and diagnostic systems 1155

To meet time requirements for SCDS it suffices to satisfy condition (5). When
determining the minimum value of elementary cycle for the polling server on
the basis of condition (5), the following is obtained:

Ras o 295.12
n(2% — 1) V= 19 (20 — 1)

Time constraints for SCDS in SLS require that the CAN bus data be gather-
ed in a period shorter than 500 [ms]. The calculations before and assumptions
show that the elementary cycle for the polling server will be equal to 500 [ms]
with the margin of over 70 [ms]. The margin will enable some enlargement of
bus modules.

The response-time of the system calculated from egs. (6), (7) and (8) for
the formal model of SCDS is considerably pessimistic. This results from the
worst-case analysis (maximum number of stuff bits for each PDO). As indi-
cated, the deviation between calculated and measured response-time increases
proportionately to the number of CAN modules. Yet, the deviation does not
exceed 11%.

— Teyere > 424.46 [ms) .

Tcycle >

10. Conclusions

This presented work refers to issues concerning analysis and design of the Su-
pervisory Control and Diagnostic Systems (SCDS) for large scale distributed
control systems. The SCDS systems belong to the sub-class of control sys-
tems performing a supervisory function in relation to the underlying control
systems. The study led to the elaboration of the methodology to construct a
general purpose SCDS systems for large scale distributed control systems. This
methodology allowed, in turn, construction of the SCDS system for the SLS
(Swiss Light Source) accelerator project.

The paper has presented main principles of SCDS based on CAN. The SCDSs
are constructed in order to meet the real-time constraints. This work has in-
troduced the design and principles of SCDS construction to meet these con-
ditions. Time-analysis methods for CAN bus in view of the SCDS have also
been described. The CAN field-bus has been chosen for implementation of the
SCDS execution sub-layer. The CAN and CANopen standards together with
synchronous data transmission mechanism allow for construction of the system
whose response-time can be unambiguously and analytically determined.

The investigations, described in this report, are focused on the time response
analysis of every part of the SCDS system. This encompasses the time response
study of the CAN bus (with CANopen protocol), including the functional anal-
ysis of the various data acquisition servers approaches. Also the real time aspect
of the Linux operating system with the RTAI (Real Time Application Interface)
extension is considered. Implementation of the acquisition server was done by
means of the object oriented techniques which ease the server maintenance and
future extensions. The server operation under Linux OS with RTAT (Real Time

1156 J. WEREWKA, M. DACH

Extension) has proven its long term deterministic behavior which was tested
in SLS environment. The theoretical investigations and experimental analyses
have shown high reliability and deterministic functionality of the CAN bus.

References

CANopen Application Layer and Communication Profile (2000) CiA (Can in
Automation) Draft Standard 301, www.can-cia.org.

CAN Specification (1991) Version 2.0. Robert Bosch GmbH, Stuttgart 1991,
www.semiconductors.bosch.de.

CAVALIERI, S. (2005) Meeting Real-Time Constraints in CAN. IEEE Trans.
on Ind. Informatics 1 (3), 124-135.

CLOUTIER, P. (2000) DIAPM-RTAI Position Paper. Dipartamento di Ingeg-
neria Aerospaziale, Politecnico di Milano.

DacH, M. (2004) Construction Issues of the Supervisory Control and Diagnos-
tic Real-Time Systems Based on CAN Bus. PhD thesis. AGH University
of Technology, Krakow.

DacH, M., KORHONEN, T. and PAL, T. (2003) Interfacing Canbus to EPICS
at the Swiss Light Source. Proceedings of ICALEPPS2003, Gyeongju,
Korea, 506-508.

DacH, M. and WEREWKA, J. (2008) Accelerator’s Supervisory Control Sys-
tem Based on CANbus. Archives of Control Sciences 18 (LIV) (3), 357-
383.

Davis, R.I., Burns, A., BriL, R.J. and LUKKIEN, J.L. (2007) Controller
Area Network (CAN) schedulability analysis: Refuted, revisited and re-
vised. Real Time Syst. 35, 239-272.

KrEIN, M.H., LEHOCZKY, L.P. and RAJKUMAR, R. (1994) Rate-Monotonic
Analysis for Real-Time Industrial Computing. Computer 27 (1), 24-33.

Liu, L. and LAYLAND, J. (1973) Scheduling algorithms for multiprograming
in a hard real-time environment. J. Assoc. Comput. Mach. 20 (1), 46-61.

MEINERT, G. 1995 Openness for Automation Networks. InTech 42 (10), 29-32.

NortTE, T. (2003) Reducing Pessimism and Increasing Flexibility in the Con-
troller Area Network. Malardalen Real-Time Research Centre, Depart-
ment of Computer Engineering, Malardalen University, Vasteras Sweden
http://www.mrtc.mdh.se.

NortE, T., NoLIN, M. and HANSSON, H. (2005) Real-Time Server-Based Com-
munication with CAN. IEEE Trans. on Ind. Informatics 1 (3), 192-201.

NortE, T., SjopiN, M. and HANSssON, H. (2003) Server-Based Scheduling of
the CAN Bus. Proc. 9" IEEE Conf. Emerging Technologies and Factory
Automation (EFTA’03), Lisbon Portugal, Sep. 169-176.

PEDREIRAS, P. and ALMEIDA, L. (2000) A Practical Approach to EDF Sche-
duling on Controller Area Network. IEEE Workshop, Porto, Portugal.

PFEIFFER, O. (1994) Feldbusse CAN, InterBus-S und PROFIBUS. Design &
Elektronik 24.

Response time of a CAN network for supervisory control and diagnostic systems 1157

RTAI - the Real Time Application Interface for Linux from DIAPM (2006)
Dipartamento di Ingegneria Aerospaziale Politecnico di Milano, official
website www.rtai.org.

SHA, L., RAJKUMAR, R. and SATHAYE, S. (1994) Generalized Rate-Monoto-
nic Scheduling Theory: A Framework for Developing Real Time Systems.
Proc. of the IEEE 82 (1), 68-82.

SINITEAN, R.F. (1996) Controller Area Network. MET DST 1996.

Synchrotron Lichtquelle Schweiz SLS. (1999) PSI Publishers, Villigen,
www.sls.web.psi.ch.

THOMESSE, J.-P. (2005) Fieldbus Technology in Industrial Automation. Pro-
ceedings of the IEEE 93 (6), 1073-1101.

TINDEL, K.W. and BURNS, A. (1994) Guaranteed Message Latencies for Dis-
tributed Safety-Critical Hard Real-Time Control Networks. Technical Re-
port YCS 229, University of York, England.

TINDEL, K.W., BURNS, A. and WELLINGS, A.J. (1995) Calculating Control-
ler Area Network (CAN) Message Response Times. Control Engineering
Practice 3 (8), 1163-1169.

TINDEL, K.W., HANssON, H. and WELLINGS, A.J. (1994) Analysing Real-
Time Communications: Controller Area Network (CAN). Proceedings of
15th IEEE Real-Time Systems Symposium. Puerto Rico 1994, 259-263.

WEREWKA, J. and Szmuc, T., eds. (2001) Analysis and Design of Real-Time
Computer systems (in Polish). PTI, Krakow.

VME(1992) VXI, Futurebus+ compatible products directory. VITA, VFEA,
International Trade Association.

ZuBERI, K.M. and SHIN, K.G. (1996) Real-Time Decentralized Control with
CAN. IEEFE Conference on Emerging Technologies and Factory Automa-
tion. EFTA 96, 1, 93-99.

ZUBERI, K.M. and SHIN, K.G. (1995) Non-Preemptive Scheduling of Mes-
sages on Controller Area Network for Real-Time Control Applications.
Proc. 1°t IEEE Real Time Technology and Application Symposium (RTAS
’95), Chicago, 240-249 .

