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Abstract: Methods of fault-hardening software implementa-
tions of the numerical Model Predictive Control (MPC) algorithms
are discussed in the paper. In particular, Generalized Predictive
Control (GPC) algorithms are considered. The robustness of these
algorithms with respect to faults is crucial for process safety and eco-
nomic efficiency, as faults may result in major control performance
degradation or even destabilization. Therefore, fault-hardening of
GPC algorithms is an important issue. The fault sensitivity of the
non-fault-hardened algorithms implementations and the effective-
ness of the fault hardening procedures are verified in experiments
with a software implemented fault injector. These experiments refer
to the control system of a chemical plant. Experience with fault
simulations resulted in some methods of fault-hardening which are
described in detail. Improvement of the dependability of the GPC
algorithms is commented for each of the proposed fault-hardening
mechanism.

Keywords: dependability, fault simulation, robust process con-
trol, GPC.

1. Introduction

High dependability and, in particular, safety are important features required
in many control systems used in industry, automotive systems, medicine, civil
engineering applications, etc. The respective control systems usually exploit
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feedback, where signals from a physical process are compared against a set
of reference values and the controller produces output signals that maintain
the controlled process within a required state space. Output signals should
be correct and delivered on time to assure the specified goal (e.g. safe plane
landing, reliable stopping of a car). The control process can be disturbed by
various internal or external faults. An important issue is to analyse system
susceptibility to such faults as well as to alleviate fault effects by detecting,
masking or tolerating them, to avoid unsafe situations. For this purpose various
fault simulation techniques have been proposed and described in the literature,
see, e.g., Anghel, Leveugle and Vanhauwaert (2005) or Arlat et al. (2003). Most
of them were used to study the calculation oriented applications, so fault effects
were qualified as correct, incorrect and detected (e.g. by generating a system
exception) by analyzing the final result for a specified input data. In the case of
real time systems with control feedback, the fault effect analysis is more complex,
because we have to trace the generated control signals in time, take into account
the reaction of the controlled object and qualify its behaviour. This process is
application dependent. In the literature such studies are rarely encountered
and in most cases they relate to simple control algorithms (e.g. based on PID
controller) and dedicated simulation platforms, see, e.g., Corno et al. (2004),
Gaid et al. (2006), Mariani, Fuhrmann and Vittorelli (2006), Nouillant et al.
(2002). In this paper we present a more universal approach, based on software
implemented fault injector (SWIFI), which disturbs the execution of the control
algorithm in real computer environment. It is adapted to allow the analysis of
reactive systems and equipped with the system behaviour analyser to qualify
fault effects.

Our fault injection tool (FITS, see Sosnowski, Gawkowski and Lesiak, 2004),
developed according to the SWIFI concept, allowed us to study sophisticated
control algorithms and improve their resistivity to faults. In particular, it traces
real fault effects, which is important for process control designers who can in-
troduce effective fault hardening mechanisms in software. The most effective
approaches are highly redundant systems based on hardware replication and
voting, which are used in some critical applications such as avionics, nuclear
power plants, life supporting systems, etc. (Baleani et al., 2003; Gaid et al.,
2006; Gawkowski and Sosnowski, 2001, 2003, 2005; Hecht, 1979; Isermann,
2006; Korbicz et al., 2004). In many applications, especially process control,
such redundancy is not economically acceptable; moreover, for longer response
times and specific control object properties (e.g. high inertia, natural fault
tolerance by auto correction in the feedback loop) some simpler solutions are
possible. Additionally, in these applications we can concentrate on transient and
intermittent faults which dominate (typically their frequency is 100-1000 times
higher than for permanent faults), Anghel, Leveugle and Vanhauwaert (2005),
Gawkowski and Sosnowski (2001).

In contrast to other approaches, we distinguish latched (e.g. bit flip in RAM
cell) and non-latched (e.g. bus line disturbance) transient faults to deal with
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RAM and flash memory based controllers. In the literature three failure models
are discussed, Cunha, Rela and Silva (2002):

– fail-arbitrary: controller produces any outputs (including not correct and
unsafe),

– fail-silent: controller produces either correct outputs or no outputs, but
in the latter case the physical application is put into a safe state,

– fail-bounded: controller produces correct outputs, no outputs after detect-
ing some errors (to assure a safe state) and wrong outputs within specified
boundaries in time and value (for a specified class of errors).

Fail-arbitrary model relates to systems with no fault detection or handling
mechanisms. Fail-silent model can be assured by controller duplication and a
comparator, Baleani et al. (2003), Isermann (2006). In practice, all controllers
based on COTS microprocessors comprise some fault detection mechanisms (e.g.
exceptions, parity checkers), so they are adequate for fail-bounded model. More-
over, fault handling can be improved at the software level, Gawkowski and Sos-
nowski (2003, 2005), Hecht (1979), Skarin and Karlsson (2008). Hence, we
concentrate on the fail-bounded model. However, we have enhanced this model
by defining quality measures of the performed tasks, which would allow for
admitting higher rate of temporary erroneous output signals.

Behaviour of the system can be evaluated by various assertions within the
performed control algorithm or directly on the controlled object. In the first ap-
proach we can use a simpler algorithm in parallel with the numerical algorithm
to evaluate the progress of the control variables (internal or output signals). In
the second approach, instead of tracing the series of output signals from the
controller, we analyse the behaviour of the controlled object itself by tracing
its state space within the acceptable execution and stability region (band) un-
der the assumed service quality level. For this purpose, some knowledge of the
control problem is needed. In the literature, the authors considered mostly con-
trolled objects with a uniquely specified safety state, e.g. in inverse pendulum
– the state of not falling down, Cunha, Rela and Silva (2002), in automotive
controllers situations resulting into running off the road e.g. due to a fault in the
ABS or car suspension system, Gaid et al. (2006), Skarin and Karlsson (2008),
Trawczyński, Sosnowski and Gawkowski (2008). This leads to defining some
critical values of the controlled parameters. Many experiments were developed
for the simplified models and only for a small number of specific faults (e.g. dis-
turbing some control variables). In many industrial applications we deal with
long term continuous processes with high inertia and delays, so the evaluation
of the correctness of the controlling process is distributed in time. We have
found that Sum of Squared Errors (SSE) of the controlled parameters is a good
choice for performing this evaluation. Such complex evaluation is provided by
our tool FITS.

Section 2 presents the basic concept of model predictive control (MPC) algo-
rithms. In particular, the explicit and numerical GPC algorithms are described.
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The experimental evaluation methodology is presented in Section 3. Various
fault-hardening methods are described in Section 4 and their effectiveness is il-
lustrated with experimental results. The paper concludes with the last section.

2. Generalized predictive control algorithms

In the MPC algorithms, Ławryńczuk, Marusak and Tatjewski (2008), Ma-
ciejowski (2002), Rossiter (2003), Tatjewski (2007), a dynamic model of the
process is used in order to predict its future behaviour and to calculate the
optimal control policy (Fig. 1).
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Figure 1. The principle of MPC algorithms; a) the predicted output signal, b)
the control signal

More specifically, at each consecutive sampling instant k a set of future
control increments ∆u(k) is calculated, assuming that since the k +Nu-th sam-
pling instant (where Nu is the control horizon) the values of control variables
are constant (control increments are zero). The future control policy ∆u(k) is
calculated in such a way that future predicted control errors (i.e. the differences
between the desired trajectory yref (k) and predicted values of the process out-
put ŷ(k) – see Fig. 1) are minimised over the prediction horizon N , i.e. the
following cost function is usually minimised:

J(k) =
∥

∥yref (k) − ŷ(k)
∥

∥

2

M
+ ‖∆u(k)‖2

Λ
, (1)
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where the reference trajectory yref (k) and the prediction of the process outputs
ŷ(k) are vectors of length nyN , whereas M and Λ are weighting matrices of
dimensions nyN × nyN and nuNu × nuNu, respectively; it is assumed that the
process has nu inputs and ny outputs (u ∈ ℜnu , y ∈ ℜny). Usually, the reference
trajectory is assumed constant over the prediction horizon.

Generally, longer prediction horizon means that the controller modifies the
present control (realised in the period defined by the control horizon) to better
stabilize the control plant over the predicted N future sampling instants. Al-
though in the GPC algorithm a number of future control increments over the
control horizon are calculated, only the first nu elements of the vector ∆u(k) are
actually applied to the process. At the next sampling instant (k+1) the predic-
tion is shifted one step forward and the whole procedure aiming at optimising
the future control policy is repeated.

In the GPC algorithm, the predictions ŷ(k+p|k) over the prediction horizon
(p = 1, ..., N) are calculated using the difference equation as the dynamic model
of the process (details can be found in Camacho and Bordons, 1999; Maciejowski,
2002; Rossiter, 2003; Tatjewski, 2007).

Owing to the use of the linear model of the process, it is possible to express
the output prediction as the sum of a forced trajectory, which depends only on
future control increments ∆u(k), and a free trajectory y0(k), which depends
only on the past:

ŷ(k) = G∆u(k) + y0(k) (2)

where the dynamic matrix G of dimensionality nyN × nuNu consists of step-
response coefficients of the process model.

2.1. The explicit GPC algorithm

When the cost function (1) is optimised without any constraints, the future
vector of optimal control increments is calculated explicitly as

∆u(k) = K(yref (k) − y0(k)) (3)

where K = (GT MG + Λ)−1GT M is a matrix of dimensions nuNu × nyN ,
which can be calculated off-line, thus the inversion of the matrix during the
operation is avoided as it is hard-coded. The control law (3) is a linear feedback
from the set-point values, the values of the process outputs and the manipulated
variable increments calculated at previous sampling instants. Although in the
explicit GPC algorithm constraints are not taken into account during calculation
of the values of manipulated variable, it is possible to apply projection of control
signals on the constraint set, see, e.g., Tatjewski (2007).

2.2. The numerical GPC algorithm

In contrast to the explicit GPC algorithm, in the numerical GPC algorithm
at each sampling instant the following quadratic programming problem with
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constraints must be solved in order to obtain optimal future control increments
∆u(k)

min
∆u(k)

{J(k) =
∥

∥yref (k) − ŷ(k)
∥

∥

2

M
+ ‖∆u(k)‖

2
Λ
} (4)

subject to :

umin ≤ u(k) ≤ umax

∆umin ≤ ∆u(k) ≤ ∆umax

ymin ≤ ŷ(k) ≤ ymax

where ∆umin, ∆umax, umin, umax, ymin, ymax denote the constraints imposed
on manipulated and controlled variables, respectively.

Generally, it is better to use the numerical algorithm, in which constraints
are handled in a systematic and relatively easy way on the whole horizon. On the
contrary, in the explicit implementation, the projection of control signals on the
constraint set is applied to the already calculated control values. Therefore, the
numerical algorithms can predict the need of constraint satisfaction in advance
and control the process more gently. Unfortunately, the quadratic optimisation
used in numerical implementation is quite time-consuming, as more complex
operations have to be done (sequence of matrix operations in order to optimise
the problem numerically). The C++ implementations use similar number of
parameters, however the explicit implementation can be formulated as a simple
sequence of additions and multiplications performed on floating point variables.
Thus, the explicit algorithm can be applied to fast processes for which short
sampling periods must be used.

3. Experimental setup

Software implemented fault injector (FITS) has been already used in various
experiments, Gawkowski and Sosnowski (2003, 2005, 2007), Gawkowski et al.
(2008), Sosnowski, Gawkowski and Lesiak (2004), Trawczyński, Sosnowski and
Gawkowski (2008). It is based on standard Win32 Debugging API to control and
disturb (by software emulation of a fault) the execution of the software applica-
tion under tests. The fault injector FITS disturbs directly the tested application
only within so-called testing areas (Gawkowski and Sosnowski, 2007), which lim-
its the scope of disturbances only to the selected parts of the application. Here,
the code of the controller and its data are contained in the dynamically loaded
library (DLL on the x86 architecture under Win32 operating system) to achieve
separation from the process model and the main loop of the application, simu-
lating the whole control system. Moreover, the same binary code of the process
simulator (compiled as a normal executable) is used during experiments with
different implementations of the control algorithm. The basic components of
the tested application, disturbed during the experiments (dashed box) as well
as the process model (not disturbed during experiments) are shown in Fig. 2.
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The tested application is also instrumented to send some measurement results
(e.g. related to the values of internal variables, output signal deviations, and sig-
nalisation of failures detected by the controller itself) to the fault injector using
user-defined messages (collected by FITS, see Gawkowski and Sosnowski, 2003,
2005, 2007; Sosnowski, Gawkowski and Lesiak, 2004; Trawczyński, Sosnowski
and Gawkowski, 2008, and references therein).
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Figure 2. The structure of the control system with the numerical GPC algorithm

3.1. Process description

The process under consideration is a chemical reactor with two manipulated
variables (u1 and u2, which correspond to the flow rate of the feed stream
into the reactor and the flow rate of the cooling substance, respectively – these
are outputs of the considered controller) and two controlled variables (y1 –
the concentration of the product, y2 – the temperature in the reactor). It is
described by the continuous-time transfer function model as in Camacho and
Bordons (1999) (time constants in minutes):
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]

. (5)

The explicit and numerical GPC algorithms have been designed. They use
the discrete-time dynamic model obtained with the sampling period Tp = 0.03
minutes. In both cases the prediction horizon is N = 3, the control horizon
Nu = 2, the weighting matrices are: M = I, Λ = λI , where λ = 0.075. The
magnitudes of manipulated variables are constrained: umin

1 = −2.5, umax
1 = 2.5,

umin
2 = −0.6, umax

2 = 0.6, whereas the control increments and values of con-
trolled variables are not constrained; 250 discrete time-steps of control system
operation are simulated according to the following scenario:

• the process starts from a given set-point (y1 = 0, y2 = 0),

• at the sampling instant k=10, y
ref
1 changes to 0.7 and y

ref
2 to −0.5,
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• at k=110, y
ref
1 changes to −0.7,

• at k=160, y
ref
2 changes to 0.5.

Moreover, unmeasured disturbances are added to both outputs of the pro-
cess. It is assumed that the disturbances change in a sinusoidal way (inverted
on the second output variable) with the amplitude equal to 0.2 and the period
of 50 discrete time instants, i.e.

yi(k) = (−1)i0.2 sin(0.04π · i) . (6)

3.2. Fault injection policy

In this study the single bit-flip faults within CPU registers, target application
data and machine instruction code (latched and non-latched, Gawkowski and
Sosnowski, 2007; Trawczyński, Sosnowski and Gawkowski, 2008) are consid-
ered (Section 1). Faults are injected pseudorandomly in the execution time of
the application under tests (AUT) and in space (bit position within disturbed
resource, distribution over application’s memory) to mimic Single Event Up-
set (SEU) effects, Anghel, Leveugle and Vanhauwaert (2005), Gawkowski and
Sosnowski (2003), Sosnowski, Gawkowski and Lesiak (2004). At the fault trig-
gering instant the AUT execution is suspended, the error is introduced within
the AUT context (e.g. a bit-flip within AUT memory), and the AUT execution
is resumed being monitored by the FITS (e.g. for any exceptions). As FITS
uses Windows programming interface for debuggers, it can control the execution
of the AUT with the resolution of particular execution instant of a single ma-
chine instruction, giving the full control over the time space of fault injections.
It is also possible to correlate the fault injection instant and the target fault
location with the source code of the AUT (basing on the mapping of machine
instructions into the source code lines) and with the observed fault effects. One
fault is injected per single run of simulation called a test later on (250 itera-
tions of GPC as described in Section 3.1). A set of tests with the same fault
location constitutes an experiment. In all experiments the average number of
faults per fault location is 1000. At the end of each test run, the qualification
of control performance is made. Additionally, the details on each test (injected
fault details, logged data from the application under tests, etc.) are available.
This provides very useful feedback information for the application developer to
decrease fault sensitivity by software-based fault-hardening mechanisms, as it is
illustrated in Section 4.

3.3. Qualification of experimental results

Control algorithms require complex analysis of the process behaviour, Gawkow-
ski et al. (2008), Trawczyński, Sosnowski and Gawkowski (2008). The standard
factor SSE (Sum of Squared Errors – calculated over y1 and y2 is used as a
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measure of correctness:

SSE =

n
∑

k=1

(

(yref
1 (k) − y1(k))2 + (yref

2 (k) − y2(k))2
)

(7)

where n denotes the simulation horizon (n=250). Fault injection instants are
limited to the first half of the simulation to allow any possible erroneous be-
haviour to be reflected in the SSE index. The reference SSE value for con-
sidered output trajectories is 9.4174 (obtained during non-faulty execution –

the trajectories y
ref
1 (k), y

ref
2 (k) are described in Section 3.1). Because of the

dynamic nature of the process, the SSE value is not equal to 0 as it takes
some time to reach the desired reference output values. First experiments show
that responses with SSE<15 can be qualified as correct ones. However, the
threshold SSE value must be chosen arbitrarily by an expert.

The whole experiment is conducted by FITS automatically. At the end of
the experiment (a set of simulation runs, each disturbed by a single fault in a
selected fault location) summarized results are given. Five classes of test results
are distinguished:

• C: correct behaviour (SSE<15),
• INC: incorrect (unacceptable) behaviour (SSE≥15),
• S: test terminated by the system due to an un-handled exception (related

to detected errors, e.g. memory access violations, invalid opcodes, parity
errors, Gawkowski and Sosnowski, 2001; MSDN Library, no date)

• T : timed-out test.
• U : the built-in error detection mechanism of the controller identified a

critical situation and signalled inability of proper operation.

For brevity, they will be called: C, INC, S, T , and U -category tests.
The post-experimental analysis of fault effects requires detailed information

on the faults injected and the application behaviour. Because FITS provides de-
tails about every test (simulated fault injection), the manual replay of the whole
test execution can be done. Moreover, all the events and user messages occur-
ring during the test are recorded. The tested application also saves its outputs
(here, simulation results, i.e. a set of process signals (u1, u2, y1, y2) in subse-
quent sampling instants) into separate files for each test (file names managed
by FITS). This gives a possibility for post-experiment analysis of fault effects
in the correlation with the injected fault and observed behaviour for each test
(see Section 3.2). By changing the SSE threshold we can admit various levels
of control quality. It is also possible to trace the whole control trajectory to
check safety conditions, performance, etc.

4. Experimental results

Six different versions of the numerical GPC algorithm are analyzed in the follow-
ing subsections – the basic one (version A) without any fault detection/tolerance
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mechanism and five increasingly advanced ones (fault-hardened versions B÷F).
They implement some exception handling, assertions or state recovery tech-
niques.

4.1. Non-hardened basic implementation

The basic implementation (referred to here as version A) takes 3942 assembly
instructions (12 736 bytes of code). The analyzed scenario is realized by the
execution of 2 360 990 assembly instructions (dynamic profile).

Fig. 3 presents the golden run trajectories for the fault-free execution. The
given set-points are easily achieved and the influence of the sinusoidal distur-
bances (eq. (6) in Section 3.1) is compensated very efficiently.

The most fault sensitive resource of the controller is its code. In case of a
latched fault, the probability of INC behavior was 7% and high SSE values
were obtained. Fig. 4 presents the distribution of SSE values in subsequent
ranges of SSE values within the INC category.
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Figure 3. System responses for the fault-free golden run: set-point trajectory
(solid line), incorrect behaviour (dashed line) SSE=9.4174
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Even though the INC probability is quite low, the percentage of C-category
tests was only 21.6%. Most of faults (also in case of other fault locations)
resulted in controller termination by the operating system due to unhandled
exceptions (S-category tests). So, after the visual analysis of INC-category test
trajectories, several types of faulty process trajectories are identified. Fortu-
nately, it is possible to detect such erroneous situations within the controller
code. They are considered in the following subsections together with the step
by step controller implementation improvement description. Subsequent de-
pendability improvements are targeted at two aspects:

• integration with system error detection and handling mechanisms (here
exceptions) to limit the percentage of S-category tests;

• inclusion of software based mechanisms to detect and further tolerate er-
roneous control.

Each of the mechanisms proposed is then also embedded in all subsequent
versions. The summary of results for all considered versions is given at the end
of this section (Fig. 8).

4.2. Fault tolerance through exception handling

As the basic version produces a lot of S-category test cases. It is clear that
without proper exception handling any significant fault robustness will not be
achieved. Moreover, the C++ statements try/catch (integrated with the native
exception handling mechanism of the Win32 operating system, which is called
Structured Exception Handling – SHE, Gawkowski et al., 2008; MSDN Library,
no date) to handle exceptions can also be used as a framework for further error
handling procedures. In version B of the analyzed application, the exception
handling within the controller procedure resets the floating point unit as well
as the parameters of the controller process model and applies to the process
manipulated variables values computed in the previous iteration.

Experiments proved the efficiency of the proposed exception handling scheme
in case of faults located within resources with states valid only during the single
iteration of the control algorithm. The increase of C-category test percentage
is significant: 67%, 30%, and 109% for faults located in CPU registers, data,
and non-latched faults within instruction code, respectively. Unfortunately, the
increase of INC-category is observed (see Fig. 8); in the worst case (non-latched
faults in the code) it rises from 7% to 75.6%. The problem behind this is the
lack of detection towards unrecoverable errors leading to repetitive exception
handling execution in consecutive algorithm iterations.

4.3. Advanced exception handling

To overcome the drawback described above, in version C the exception handling
procedure invocation counter is introduced. As the considered fault model as-
sumes only single fault per application execution, only single exception handling
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attempt is allowed. The second exception (in further algorithm iterations) trig-
gers a safety procedure, which signals the inability of the algorithm to continue
the operation and it is followed by its self-termination (U-category tests – see
Section 3.3). It is also possible to extend the proposed counter in real-life
applications to be implemented e.g. as a multivalued health measure with a
threshold defined and different incrementing/decrementing policy (e.g. reset-
ting the counter after a few subsequent exception-free iterations), as described
in Gawkowski and Sosnowski (2001) and the references therein.

Introducing the exception counter not only reduced significantly the proba-
bility of INC-category tests (more than ten times) for all fault locations com-
pared to version B (see Fig. 8) but also in case of faults latched in the instruction
code. In the case of non-latched faults in the code the INC cases are not ob-
served at all. However, a typical unsafe scenario related to the violation of
control value constraints is identified within the remaining INC cases, as shown
in Fig. 5.
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Figure 5. System responses to fault occurring at the 108th sampling instant
at the algorithm data space; fault-free (dashed line), incorrect behaviour (solid
line) SSE=852.8809

Responses shown in Fig. 5, obtained after the fault occurrence (solid lines)
are clearly unsatisfactory. Both outputs are far from their set-point values.
However, an early indication of bad operation of the controller is possible. The
second control variable (u2) violates its lower constraint since the 111th sampling
instant as it stays on the value −1.0535, far beyond the constraint (−0.6), what
results in a very high SSE value.

Another similar example of the violation of the bounds on control variables
can be found in case of a fault located in the instruction code at the 104th
sampling instant (instruction xor esi, esi changed to xor esi, edi). In this case,
the value of u2 in the 110th sampling instant is equal to −1.6507 (the constraint
is violated by more than 1 – see Section 3.1) and in the next sampling instants it
stays constantly at the value equal −0.6897 (also out of the range of constraints),
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SSE=449.9906. It is interesting to note that similar results can be observed for
different fault locations, here for data and instruction code. As the numerical
algorithm should always generate the control variables within their limits, it is
clear that the fault in the controller must have occurred.

4.4. Detection of control value violation

In version D, the suitable test against violations of control value constraints
is introduced to the algorithm at the end of each iteration. Error detection
triggers the exception occurrence that leads to the same handling procedure as
in the previous version. This brought further improvement of the fault tolerance.
Although the probability of INC cases is further reduced (see Figs. 8 and 9),
unfortunately another dangerous behaviour can be observed (see Fig. 6).
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Figure 6. System responses to fault occurring at the 90th sampling instant
within the instruction code; fault-free (dashed line), incorrect behaviour (solid
line) SSE=199.9839

In the considered case both process outputs (y1, y2) are far from their set-
point values like in examples discussed earlier. This is caused by the fact
that both control variables are locked on constant values (sampling instances
157÷250). Contrary to the case of Fig. 5, though, this time both control vari-
ables are within their constraints (Section 3.1); in particular, the first control
variable (u1) is locked on the boundary. It should be stressed that in practice
it is quite a common situation because usually, if the process is controlled ef-
ficiently, the values of control variables are equal to the values of constraints.
Therefore, this situation not always indicates wrong behavior of the controller.
On the other hand, in the studied case, the second control variable (u2) is
locked between its limits (not on the boundary). If both outputs are far from
the set–point values, the controller should try to compensate them, hence, such
a situation clearly indicates that something wrong has happened with the con-
trol algorithm. In the following part of this article, we refer to such a failure as
a locked controller.
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4.5. Locked controller detection

After introducing the suitable test for locked controller cases (detection triggers
an exception) in version E, the detection rate of faulty situations improved even
more with only less than 0.12% of dynamic overhead (compared to version D,
see Fig. 9). Unfortunately, the remaining INC cases are hard to recognize with
simple error detector procedures (see a sample case shown in Fig. 7).
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Figure 7. System responses to a fault that occurred at the 8th sampling instant;
fault-free (dashed line), incorrect behaviour (solid line) SSE=312.3329

It is difficult to detect the faulty situation when both control variables are on
limits, because this not always indicates improper behavior of the controller.
Moreover, it should be emphasized that the shapes of output responses are not
the result of the random disturbance, but of changes of control signal between
minimal and maximal values, caused by the malfunction of the controller, cor-
rupted by the injected fault.

4.6. Hybrid approach

It is worth noting that if both control values are within the constraint regions,
the explicit GPC implementation has to produce the same control values as its
numerical implementation. In practice however, deterioration of the obtained
responses occurs frequently before control variables are locked or their values are
on constraints. This can be observed, e.g., in Fig. 6, where differences between
the faulty responses and the fault-free responses occur before the 100th sampling
instant. Hence, error detection efficiency can be improved by the validation
of the numerical GPC implementation with its explicit version (comparison
of computed control variables values from both implementations – a hybrid
approach – version F). Such an approach was found useful also in the case shown
in Fig. 7, wherein the obtained responses are clearly unacceptable. Fortunately,
in the 34th sampling instant, when control variables are between their limits,
the hybrid approach detects the fault.
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4.7. Summary of experiments

Fig. 8 summarizes experimental results for all considered versions (A÷F). For
all examined fault locations the percentage of tests in each category is shown.
As expected, the proposed hybrid solution (F) proved to be the most efficient
one.

Fig. 9 depicts the relative efficiency of incorrect behaviour probability re-
duction compared to the basic version A (latched faults within the controller
code). As the INC probability in version B rises dramatically (see Fig. 8 and
Section 4.2), it is not considered here in order to keep the chart clear. Note that
the very high degree of fault-tolerance is achieved at relatively low cost for all
of fault-hardened versions (B÷F). Even if the static number of instructions in
version F is by 26% higher than in version A, dynamically (related to the com-
putation time) this overhead is only 18%, as the explicit GPC implementation
is very compact compared to the numerical one (as mentioned in Section 2.2).
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5. Conclusions

The paper considers fault-hardening of software implementation of the numer-
ical Generalized Predictive Control (GPC) algorithm. Simulation experiments
have revealed that a large number of faults do not result in unacceptable con-
trol errors. A detailed analysis of the controller behaviour revealed various
kinds of natural (intrinsic) redundancy. Some faults generate temporary (active
for one or a few control iterations) deviations of control signals. Their effects
are compensated in subsequent iterations, which may lead to some acceptable
performance degradation of control. We have found that even in the case of
sophisticated control algorithms involving quite long history of state variables,
the natural fault tolerance capabilities are quite high, although they can be still
increased significantly with simple software mechanisms. On the other hand, we
have identified unstable behaviour of the system for some faults, which needs
special treatment.

Six different versions of the algorithm are proposed and analysed (with-
out and with some fault detection and fault tolerance mechanisms). First, the
exception handling procedure is proposed and optimised. Then, several error
detection mechanisms are added and integrated with the fault handling frame-
work. The detection of the control value violations of the constraints in case
of the numerical GPC is a natural choice. Next, the detection of the controller
locking is introduced. Usually it is difficult to design a simple test detecting im-
proper control system behavior during operation within prescribed boundaries,
so, the hybrid verification extending the previous version is proposed. The ad-
ditional verification of the calculated control values generated by the numerical
GPC algorithm is performed using, as a reference, the explicit, compact GPC
formulation. The latter concept is based on the fact that both algorithms should
calculate identical control values if they lay within constraints boundaries.

The simulation experiments using our software implemented fault injector
FITS clearly show that the fault-hardened implementation of the GPC algo-
rithm offers significantly improved robustness with respect to faults. It is worth
noting that the fail-bounded model provides better system productivity (higher
probability of the operational mode) than the classical fail-silent model (here
long non-operational mode in a safe state is admitted). On top of that, an
excellent performance was obtained at a very low overhead (around 18%) of
computation time.
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